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EXECUTIVE SUMMARY 

The rapid advancement of artificial intelligence (AI) is reshaping the transportation sector, with 
applications spanning autonomous vehicles, driver injury prevention, and traffic management. Efficient 
traffic management, particularly through adaptive intersection control, holds significant potential for 
reducing congestion. This study explores the application of reinforcement learning (RL) to adaptive 
traffic signal control in rural, isolated, tribal, and indigenous (RITI) communities, which face unique 
challenges such as rare extreme weather events. Standard RL approaches struggle in these contexts due 
to limited exposure to these rare events. 

In our study, we first evaluate several mainstream RL algorithms, including DQN, PPO, QR-DQN, TRPO, 
ARS, and A2C, in two evaluation cases, and identified DQN and PPO as the most promising approaches. 
Then, we propose to use offline RL algorithms, which can train on existing datasets before interacting 
with the real environments. This provides a robust solution because (1) it is costly to deploy the 
algorithm and let the traffic network operate under suboptimal policies before the algorithm learns the 
optimal policy, and (2) it mimics the scenario where some events are not seen in the training dataset. 
We compare the performance of offline RL algorithms using different offline datasets, generated by 
policies of different levels of expertise, in realistic test cases. Results indicate that offline RL approaches 
perform better when trained on datasets from expert policies, stressing the importance of the quality of 
the offline datasets. These findings highlight the potential of RL-based adaptive traffic control for 
improving transportation efficiency, especially when tailored to the specific conditions of RITI 
communities. 
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CHAPTER 1. INTRODUCTION  

1.1. Background and Motivation 

The advances of artificial intelligence (AI) are transforming the transportation sector, one of the most 
critical infrastructures in modern society [1]. AI-based technologies have been used in many facets of 
the transportation system, such as autonomous vehicles, driver injury prediction and prevention, and 
traffic management. In particular, efficient traffic management can greatly reduce traffic congestion, a 
problem that we all face on a daily basis. Therefore, it is of paramount importance to develop better 
traffic management systems, which will in turn boost the efficiency of the overall transportation system. 

One effective measure of traffic management is intersection management, where we optimize the 
phasing of traffic signals at each intersection of the transportation network. Recently, reinforcement 
learning (RL) has been applied to adaptive traffic signal control and demonstrated superior performance 
[2–4]. In a nutshell, reinforcement learning is a branch of machine learning and aims at learning to 
optimally interact with dynamic environments. In the context of adaptive traffic signal control, 
reinforcement learning algorithms can learn to optimally set the phase of traffic signals under time-
varying environments of traffic conditions, given enough training data.  

However, the potential of standard reinforcement learning is limited for intersection management in 
rural, isolated, tribal, and indigenous (RITI) communities due to unique challenges. Specifically, RITI 
communities are at elevated risks of extreme weather conditions and natural disasters. These extreme 
events rarely happen, and yet have significant and perhaps disproportionate impact on the performance 
of the transportation system. Standard reinforcement learning relies heavily on the experiences to learn 
how to react under such events. But these extreme events do not occur often enough for the 
reinforcement learning algorithms to learn how to optimally manage the intersections under these rare 
conditions. Therefore, conventional reinforcement learning algorithms will converge slowly, if converge 
at all, in the presence of rare extreme events. 

1.2. Overview of The Report 

In this project, we propose safe reinforcement learning for intelligent traffic signal control for RITI 
communities under rare extreme events. The key innovation behind safe reinforcement learning under 
significant rare events is the adjustment of rare event probabilities in the training process. More 
specifically, we can artificially increase the probabilities of significant rare events (e.g., extreme weather 
conditions that paralyze the transportation system) in a simulator, such as the Simulation of Urban 
MObility (SUMO) platform [5]. Then we make proper adjustment (e.g., through importance sampling) in 
the learning process to account for the altered rare event probabilities [6, 7]. Under well-designed 
importance sampling techniques, the policy can learn to behave in response to rare events, even though 
they occur with extremely low probabilities. Based on this simulation principle, we investigate several 
reinforcement learning paradigms for intersection management, in the quest of improving the 
robustness and efficiency of the learned policy.  

In Chapter 2, we first formulate the intersection management problem as a Markov decision process 
(MDP), outline our design and analysis framework, and describe the simulation platform.  
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In Chapter 3, we present our preliminary results on evaluating a variety of deep reinforcement learning 
algorithms. The purpose of this evaluation process is to select a few high-performing candidates. We 
build on these candidate algorithms to develop the final proposed algorithm.  

In Chapter 4, we describe our main results, namely the design of multi-agent offline RL algorithms for 
improved efficiency and robustness. We demonstrate the performance improvement of the proposed 
algorithm through extensive simulations.  

In Chapter 5, we discuss some preliminary results in applying federated learning.  

We conclude the report in Chapter 6. 
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CHAPTER 2. DEEP REINFORCEMENT LEARNING FOR INTERSECTION MANAGEMENT 

In this chapter, we formulate the problem of optimal intersection management under rare weather 
events as a Markov decision process (MDP). Then we describe our design and analysis framework that 
accounts for the rarity of extreme weather events. Finally, we introduce our simulation environments 
and test cases. 

2.1. Problem Formulation as Markov Decision Process 

2.1.1. Preliminaries 

A Markov decision process can be defined by ℳ = (𝒮𝒮,𝒜𝒜,𝑃𝑃, 𝑟𝑟, γ,𝐻𝐻, μ0), where 𝒮𝒮 is the set of states, 𝒜𝒜 
is the set of actions, 𝑃𝑃:𝒮𝒮 × 𝒜𝒜 → Δ(𝒮𝒮) is the state transition probability function with Δ(𝒮𝒮) being the set 
of probability distributions over the set 𝒮𝒮, 𝑟𝑟:𝒮𝒮 × 𝒜𝒜 → 𝑅𝑅 is the reward function, γ ∈ [0,1) is the discount 
factor, 𝐻𝐻 ∈ 𝑁𝑁+ is the time horizon, and μ0 ∈ Δ(𝒮𝒮) is the initial state distribution. A policy π:𝒮𝒮 → Δ(𝒜𝒜) 
specifies the action selection probability in state 𝑠𝑠. Given the MDP ℳ, we would like to find a policy to 
maximize the expected average discounted reward. This can be formulated as the following 
optimization problem:  

maxπ(1 − γ) ⋅ 𝐸𝐸π ��γ𝑡𝑡𝑟𝑟(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)
𝐻𝐻

𝑡𝑡=0

�. 

Here, 𝐸𝐸π is the expectation with respect to the distribution of trajectories generated by 𝑠𝑠0 ∼ μ0, 𝑎𝑎𝑛𝑛 ∼
π(⋅ |𝑠𝑠𝑡𝑡), and 𝑠𝑠𝑛𝑛+1 ∼ 𝑃𝑃(⋅ |𝑠𝑠𝑛𝑛,𝑎𝑎𝑛𝑛) for all 𝑛𝑛 = 0, … ,𝐻𝐻.  

Note that the time horizon can be infinity, namely 𝐻𝐻 =  ∞. 

2.1.2. Problem Formulation 

We formulate the intersection management problem as an infinite-horizon Markov decision process. 
We divide the time into discrete epochs 𝑛𝑛 = 1,2, …. At each epoch 𝑛𝑛, the ingredients of the MDP are 
defined as follows. 

• State 𝑠𝑠𝑛𝑛: The state 𝑠𝑠𝑛𝑛 summarizes all available information relevant to the problem at epoch 𝑛𝑛. 
An example of the state could include the numbers of vehicles entering each intersection, lanes 
and driving directions of the vehicles, and current wait time of the vehicles at red light. 

• Action 𝑎𝑎𝑛𝑛: The action 𝑎𝑎𝑛𝑛 is the collection of control variables at epoch 𝑛𝑛. An example of the 
action could be the phase of each intersection in the network, where the phase is the 
combination of all signals at each direction of the intersection. For example, the phase “GrGr” at 
a four-way intersection indicates that the light in four directions are green, red, green, red (e.g., 
in the counter-clock wise direction).  

• Reward function 𝑟𝑟𝑛𝑛(𝑠𝑠𝑛𝑛,𝑎𝑎𝑛𝑛): The reward function describes the reward we get in epoch 𝑛𝑛, which 
depends on the current state and action. A negative reward indicates incurred cost. An example 
reward function could be the negative of the weighted sum of the total wait time of all vehicles 
and the total queue length at all intersections, where weights can be set to balance different 
performance criteria (e.g., wait time and queue length). 
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Note that the above definition serves as an illustrative example. There can be numerous ways of 
defining states, actions and rewards, depending on the information available, the objective of 
intersection management. For example, if we have more detailed road conditions and information 
about individual vehicles, we may include lanes and driving directions of each vehicle in the state. 
Similarly, we can also define the action as phase switch or phase duration. Last but not the least, we can 
add additional terms in the reward function to avoid collapse of the system under extreme events.  

Since we are concerned with the system under significant rare events, we model the states in more 
detail. In particular, we can define a subset 𝒯𝒯 of the entire state space 𝒮𝒮, where each state 𝑠𝑠 ∈  𝑇𝑇 is a 
rare event. At each state 𝑠𝑠 ∈  𝑆𝑆, there is a small probability 𝜀𝜀(𝑠𝑠) that the next state will be a rare event 
state. Therefore, the state transition probability can be written as 𝑝𝑝(𝑠𝑠′|𝑠𝑠,𝑎𝑎) = [1 − 𝜀𝜀(𝑠𝑠)] · 𝑓𝑓(𝑠𝑠′|𝑠𝑠,𝑎𝑎) if 
𝑠𝑠′ ∈ 𝒯𝒯 and  𝑝𝑝(𝑠𝑠′|𝑠𝑠,𝑎𝑎) = 𝜀𝜀(𝑠𝑠) · 𝑔𝑔(𝑠𝑠′|𝑠𝑠,𝑎𝑎) if 𝑠𝑠′ ∉ 𝒯𝒯. Here, 𝑔𝑔(𝑠𝑠′|𝑠𝑠,𝑎𝑎) and 𝑓𝑓(𝑠𝑠′|𝑠𝑠,𝑎𝑎) are the state transition 
probabilities when the next state is a rare event state or not, respectively. We explicitly use different 
probability transition functions 𝑔𝑔(𝑠𝑠′|𝑠𝑠,𝑎𝑎) and 𝑓𝑓(𝑠𝑠′|𝑠𝑠,𝑎𝑎) to model the different system dynamics under 
regular conditions and under extreme events. 

2.2. Safe reinforcement learning under rare events 

A reinforcement learning algorithm aims to learn a policy  

𝜋𝜋(𝑠𝑠,𝑎𝑎) = 𝑃𝑃𝑃𝑃(𝑎𝑎𝑛𝑛 = 𝑎𝑎|𝑠𝑠𝑛𝑛 = 𝑠𝑠) 

that specifies the probability distribution of the actions to take under each state. Given a policy 𝜋𝜋, we 
can compute the value function, which is the expected reward starting from each state, by solving the 
following Bellman equation:  

𝑉𝑉𝜋𝜋(𝑠𝑠) = �𝜋𝜋(𝑠𝑠,𝑎𝑎) �𝑝𝑝(𝑠𝑠′|𝑠𝑠,𝑎𝑎)[𝑟𝑟(𝑠𝑠,𝑎𝑎) + γ𝑉𝑉π(𝑠𝑠′)]
𝑠𝑠′∈𝑆𝑆𝑎𝑎∈𝐴𝐴

 

where 𝛾𝛾 ∈  (0,1) is a discount factor.  

The well-known temporal difference learning algorithm observes the pair (𝑠𝑠,𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) at each epoch, and 
updates the value function as follows:  

𝑉𝑉(𝑠𝑠) ← 𝑉𝑉(𝑠𝑠) + 𝛽𝛽[𝑟𝑟 + 𝛾𝛾𝛾𝛾(𝑠𝑠′)− 𝑉𝑉(𝑠𝑠)] 

where 𝛽𝛽 ∈  (0,1) is the learning rate. It is proved that the temporal difference learning algorithm can 
converge to the optimal value function, if each state is visited “sufficiently many times”. However, since 
rare events occur with extremely low probabilities, the rare event states may not be visited sufficiently 
often. Therefore, the fundamental assumption to make the TD learning work does not hold when there 
are rare events. The learned policy would “ignore” the rare events and fail to learn how to behave in 
these situations. We can expect the same “curse of rarity” in other RL algorithms. Fig. 2.1 illustrates this 
challenge.  
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Figure 2.1 Challenges of reinforcement learning for intersection management under rare events. The 
low-probability extreme events are underrepresented in the data samples of states and rewards. 

Therefore, it is difficult for the algorithm to learn how to behave under these states. 

2.3. Importance Sampling Techniques 

One way to deal with the challenges of rare events is to artificially increase the probabilities of rare 
events in simulation and use importance sampling techniques [6, 7] to correctly learn the true value 
function. 

Mathematically, this involves increasing the probabilities of the significant rare events to ϵ�(𝑠𝑠) > 𝜀𝜀(𝑠𝑠) 
during the training phase, and adjusting the value function update equation (e.g., temporal difference 
learning) using importance sampling. The framework is illustrated in Fig. 2.2. 

 

 

Figure 2.2 Illustration of the importance sampling technique to deal with the rarity of extreme events. 

2.4. Simulation Platform and Experiment Setup 

In this project, we use the widely-used SUMO platform for simulating a network of intersections. See 
Fig. 2.3 for an example of a four-way intersection in SUMO. 

We build on two open-source repositories, SUMO-RL [8] and Reinforcement Learning Benchmarks for 
Traffic Signal Control (RESCO) [9], which provide the interface between reinforcement learning 
repositories and the SUMO simulator. 

Throughout the simulation, we use the following specification of the MDP. 
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• States: 
o the current active green phase; 
o a boolean variable of whether a given amount of time (in seconds) have already passed 

in the current phase; 
o lane density: the number of vehicles in incoming lane divided by the total capacity of the 

lane; 
o lane queues: the number of queued (speed below 0.1 m/s) vehicles in incoming lane 

divided by the total capacity of the lane. 
• Actions: the next phase of the intersection. 
• Rewards: the negative of the total delay (i.e., the total delay is minimized when the reward is 

maximized). 

The probability of the rare event 𝜀𝜀(𝑠𝑠) is a parameter that will be varied for different evaluation 
scenarios. The state transition probability depends on the traffic conditions (e.g., distribution of 
incoming vehicles). We use the default settings in the SUMO platform. 

2.5. State of The Art 

There has been extensive research on intersection management [10]. Researchers have utilized and 
developed different techniques, such as control theory [11, 12], optimization [13]), heuristics [14], and 
hybrid of the above techniques [10]. 

Reinforcement learning has found its success in a variety of areas, such as learning to play Atari games 
[15] and Go [16]. It has also been applied to various research areas in transportation, such as control of 
autonomous vehicle [17, 18], fleet management [19–21], and routing [22]. Recently, there are works 
that apply reinforcement learning to intersection management [2–4]. These works use standard 
reinforcement learning to adaptively control traffic signals in order to optimize the performance (in 
terms of delay, throughput, etc.) of the transportation system. However, these works did not consider 
significant rare events in the transportation system and their impact on the performance of 
reinforcement learning. 

Reinforcement learning under rare events were proposed in the generic settings [6, 7]. But these 
general frameworks may not consider specific features of the transportation system and can be 
improved when applying to intersection management. 

To the best of our knowledge, there has been no work that applies safe reinforcement learning under 
significant rare events to intersection management. The development of such algorithms is crucial for 
the RITI communities. 

In the next two chapters, we will first present our preliminary results on evaluating existing RL 
algorithms on our problem setting, and then describe the proposed algorithm with improved efficiency 
and robustness. 
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Figure 2.3 Illustration of a four-way intersection in the SUMO platform [5]. The current phase of this 
intersection is GrGr. 
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CHAPTER 3. PRELIMINARY RESULTS 

In this chapter, we present preliminary results on the evaluation of existing RL algorithms under two 
synthetic evaluation cases. The road networks in these two cases are much smaller than the test cases in 
Chapter 4. However, they provide important insights and help us narrow down our search and design of 
the final algorithm. More concretely, this evaluation process is necessary due to several reasons. 

• The variety of available RL algorithms: Due to convenient interfaces provided by SUMO-RL [8] 
and RESCO [9], we can train and evaluate all the RL algorithms available on stable-baselines3 
[23] and RLlib [24]. While this offers great flexibility, it would also incur a high time cost if we 
were to train and test all available algorithms in the test cases. Hence, it is important to weed 
out the algorithms that are unlikely to perform well in the test cases.  

• Complexity of the test cases: As we will discuss in Chapter 4, the test cases are realistic traffic 
networks in Cologne and Ingolstadt in the SUMO platform. These test cases have up to 19 
intersections, resulting in large state spaces and action spaces. Therefore, it is helpful to focus 
on algorithms that are more likely to perform well.  

• Hyperparameter tuning: The RL algorithms are well known to be sensitive to the 
hyperparameters (e.g., the learning rate, the neural network architecture of the actor and critic 
networks) [25]. To ensure that all the RL algorithms are performing, we need to search through 
the space of hyperparameters. It is impractical to perform hyperparameter tuning for all the 
available algorithms on all the test cases. As a result, it is useful to limit the number of candidate 
algorithms for the test cases. 

3.1. Evaluation Cases 

We use two 4 × 4 grid networks as the evaluation cases during this initial screening phase. See Fig. 3.1 
for illustration of these two evaluation cases. 

• “4x4 Grid - 3 Lanes” [26]: A 4x4 grid network with 16 four-way intersections. Each direction has 
3 lanes going left, straight, and right, respectively.  

• “4x4 Grid - 2 Lanes” [27]: A 4x4 grid network with 16 four-way intersections. Each direction has 
at most 2 lanes: the horizontal directions have 2 lanes, and the vertical directions have 1 lane.  

The traffic data are synthetic data generated according to some distributions. Please see [26, 27] for 
details. 
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Figure 3.1 Two 4x4 grid networks for initial screening of RL algorithms. Both networks have 16 four-way 
intersections. One network has 3 lanes in each direction, and the other has 2 lanes in horizontal 

directions and 1 lane in vertical directions. 

3.2. Evaluation Results 

We evaluate the RL algorithms in stable-baselines3 that support discrete actions. Below is a brief 
description of these algorithms. 

• Deep Q-Network (DQN) [15] - DQN combines the classic Q-learning with deep neural 
networks, allowing it to handle high-dimensional input spaces such as images. It approximates 
the Q-value function using a neural network, and employs techniques such as experience 
replay (sampling previous experiences) and target networks (a more stable Q-value target) to 
stabilize learning. DQN is one of the first deep reinforcement learning algorithms. It was 
originally designed to work on problems with discrete actions.  



 

11 
 

• Quantile Regression DQN (QR-DQN) [28] - As an extension of DQN, QR-DQN estimates the 
distribution of future rewards, as opposed to estimating the mean of the rewards in DQN. By 
predicting multiple quantiles of the reward distribution, it allows for a more robust 
performance by taking into account the uncertainty. This is especially beneficial for highly 
stochastic environments.  

• Advantage Actor-Critic (A2C) [29] - A2C is an actor-critic algorithm, which uses an actor 
(policy) and a critic (value function) to estimate both the policy and the value of states. A2C is 
the synchronous version of the actor-critic algorithms where multiple agents (actors) are 
trained in parallel. It uses an advantage function (which measures how good an action is 
compared to others) to update the actor, stabilizing learning by reducing variance in policy 
updates.  

• Augmented Random Search (ARS) [30] - ARS is a gradient-free method that performs random 
search in the parameter space of the policies. It evaluates the performance of several random 
policy variations, selects the best-performing search directions, and updates the main policy 
based on these variations. Its main advantage is computational efficiency, since it does not 
require backpropagation to calculate the gradient. However, its performance might not be 
the best if we allow all the algorithms to run for sufficiently long time.  

• Trust Region Policy Optimization (TRPO) [31] - TRPO is a policy gradient method that ensures 
stable updates by enforcing a constraint on the step size of policy updates. This constraint 
ensures that the new policy doesn’t diverge too much from the old one by limiting the change 
in the Kullback-Leibler (KL) divergence between the two. TRPO is designed to guarantee 
monotonic improvement in policy performance and is effective in high-dimensional 
continuous control tasks.  

• Proximal Policy Optimization (PPO) [32] - PPO is another policy gradient method that 
improves stability and sample efficiency (empirically) of TRPO by using a novel clipped 
objective function. It operates in the actor-critic style, and performs stochastic gradient 
ascent on a “surrogate” objective function that reflects the performance of the policy over 
multiple epochs. 

Table 3.1 summarizes the performance of all the RL algorithms listed above. For each algorithm, we 
perform hyperparameter optimization, where we randomly choose 50 sets of hyperparameters (i.e., 
learning rate, coefficient of policy entropy, neural network architecture, etc.). The best results, 
measured by average delay over 10 random experiments, are reported for each algorithm. We also 
include the standard deviation for each algorithm. Note that the delay values under the 4x 4 Grid - 2 
Lanes scenario is much higher compared to the 3-lane scenario, because of the reduced number of 
lanes. 

Below are some observations from this evaluation stage.  

• Out of the six algorithms tested, DQN and PPO are the best. Each one of them achieves the 
lowest average delay in one evaluation case. 

• QR-DQN is not as good as DQN in the evaluation cases. It does have slightly smaller standard 
deviation as promised, but higher averages. The reason may be that it is less sample efficient.  

• As expected, TRPO achieves higher delay than its improved version in PPO. Therefore, we will 
use PPO instead of TRPO in the test cases.  
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• ARS and A2C are consistently worse than the other algorithms, showing that random search 
(ARS) and vanilla on-policy algorithms (A2C) may not work well. 

We include details of hyperparameter optimization in Appendix A.  

Now that we have identified DQN and PPO as the two best algorithms, we will move on to algorithm 
design on the test cases based on these two algorithms. 

 

Table 3.1 Performance of RL algorithms on evaluation cases. The metric is delay (in seconds). For each 
data point, we run 10 random trials and report the average value and the standard deviation. For each 

algorithm, we show the best results obtained from the one with the best hyperparameters. 

 4x4 Grid – 3 Lanes 4x4 Grid – 2 Lanes 
ARC 50.0 ± 1.3 135.6 ± 3.2 
A2C 47.3 ± 0.8 117.8 ± 2.3 
DQN 21.2 ± 0.6 83.7 ± 2.9 

QR-DQN 33.0 ± 0.5 100.7 ± 1.4 
PPO 22.1 ± 0.6 80.8 ± 2.2 

TRPO 26.3 ± 0.5 95.6 ± 2.0 
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CHAPTER 4. MULTI-AGENT OFFLINE RL 

4.1. Motivation 

In Chapter 3, we have demonstrated that (standard) RL has the potential to perform well for 
intersection management. However, standard RL relies on the online interactions with the traffic 
network for the agents to learn the optimal decision-making rules. More specifically, a RL agent starts 
with a suboptimal, or even random, policy, and interacts with the traffic network by taking actions, 
receiving rewards, and observing the next state. Through such interactions, the agent learns how “good” 
the actions and the policies have been, and keeps refining the policy until it converges to the optimal 
one. The major drawback is that online interactions are expensive, and will cause significant delay 
before the algorithm learns the optimal policy. 

To tackle this challenge, we propose to use an emerging paradigm of RL, namely offline RL [33–37]. 
Offline RL is fundamentally different from traditional RL, which requires extensive online interactions 
with the traffic network. In offline RL, the agent trains on the existing data exclusively without 
interacting with the environment and could still perform well when deployed. The terms “offline” 
emphasize the fact that the RL agent relies on the existing data only and that the training is offline (see 
Fig. 4.1 for illustration of the distinctions from standard RL). Therefore, we can utilize the already 
collected data of traffic networks, even though the data may be generated from suboptimal intersection 
management policies. 

 

Figure 4.1 Differences between standard reinforcement learning (Chapter 3) and offline RL. In standard 
RL, the agent interacts with the environment by rolling out the policy and collecting data from the 

environment. In offline RL, the agent trains the policy with existing data and does not interact with the 
environment. 

 

The goal of this chapter is to develop offline RL algorithms that can train on existing datasets before 
real-world deployment and generalize well to the real-world environment. In addition, we implement 
multi-agent versions of offline RL algorithms to further improve the sample efficiency and reduce the 
computational complexity. 
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4.2. Limitation of Existing Works on Offline RL 

4.2.1. Off-Policy RL on Static Datasets 

Offline RL could be viewed as off-policy RL [38–47] on static datasets. Off-policy RL refers to a RL training 
paradigm in which the agent learns from off-policy data (i.e., data generated from previous iterations of 
policies). Standard off-policy RL still requires online interactions with the environment, and maintains an 
adaptive dataset that contains entries of past interactions with the environment. Past works have 
shown that when directly applied to static datasets, off-policy RL suffers from large bootstrapping errors 
due to distribution shift (i.e., the values of state-action p airs where is little or no data may be highly 
inaccurate) [38, 39]. Therefore, standard off-policy RL performs poorly on static datasets [38, 39]. 

4.2.2. Off-Policy RL on Static Datasets 

Behavior cloning. Most existing offline RL works focus on reducing bootstrapping errors due to 
distribution shift. Since distribution shift arises from the discrepancy between the data-generating 
policies and the current policies in the training, a natural way to reduce distribution shift is imitation 
learning or behavioral cloning, namely to mimic the policies that generated the dataset [48–51]. A 
fundamental limitation of behavioral cloning is that the data-generating policy may be highly 
suboptimal, setting a low ceiling for the offline policies. 

Model-based approach. Some offline RL works adopt the model-based RL approach [52–54]. In model-
based RL, the agent first learns the underlying Markov decision process (MDP) by estimating state 
transition probabilities and rewards from the data. Given the learned model, it uses dynamic 
programming to solve for the optimal policy. In the offline setting, it is typical to learn a pessimistic 
MDP, where the reward is penalized by the uncertainty from the dataset (e.g., adding a penalty for the 
state-action pairs uncommon or unseen in the dataset) [55–68]. However, the prevalent pessimistic 
approach in model-based offline RL can lead to overly conservative models, resulting in under-
performing policies. 

Model-free approach. Some offline RL works adopt the model-free RL approach, where the agent 
directly learns the Q-values of the state-action pairs (the expected cumulative rewards starting from the 
given state-action pair) and the optimal policy from the Q values. To deal with distribution shift in the 
offline setting, existing works [38, 39, 69–95] have proposed to (1) restrict the action space so that the 
learned policy is close to the data-generating policy (e.g., imposing some divergence constraints [38, 80, 
81]), (2) learn a pessimistic Q-value function (e.g., augmenting the standard Bellman error objective with 
a Q-value regularizer [74, 78]), or (3) use data augmentation [92]. Similar to model-based offline RL, 
pessimism is shown to be important for model-free offline RL [83, 93], leading to conservative policies. 

Theoretical Analysis of Sample Complexity. There are theoretical works on how many samples are 
needed in the static dataset for offline RL to learn the optimal policy in the online setting [41, 96–108]. It 
is proven that the sample efficiency is exponential in the time horizon of the MDP under mild conditions 
[105], and that to achieve polynomial sample efficiency, we need strong assumptions on the data 
coverage [108]. For example, the state-of-the-art result requires the data-generating policy to have 
taken the optimal action at each state (possibly with incorrect probabilities) and to have visited all the 
possible states [108]. While such requirements guarantee polynomial sample complexity to achieve the 
optimal policy, they may be unrealistic in practice.  
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4.3. Test Cases 

4.3.1. Test Scenarios 

We use realistic traffic networks in the cities of Cologne and Ingolstadt as the test cases. These two 
cases are widely used SUMO scenarios “TAPAS Cologne” [109] and “InTAS” [110]. See Fig. 4.2 for 
illustration of these two test cases (Figure credit: RESCO Github Repository [9]). 

 

Figure 4.2 Illustration of the Cologne and Ingolstadt networks as the test cases. In each network, we 
have three test scenarios: a single intersection (“Single Signal”), a road with multiple intersections 
(“Corridor”), and a network with multiple roads and intersections (“Region”). Figure credit: RESCO 

Github Repository [9]. 
 

In each network, there are three test scenarios. 

• “Single Signal”: A single signalized intersection. 
• “Corridor”: A main road with multiple signalized intersections along the road. 
• “Region”: A network of multiple roads and multiple signalized intersections. 

The traffic data is provided by SUMO, which is derived from measurement and estimation of real traffic 
data in these two cities. In summary, there are six test scenarios, where each test case has three 
scenarios of “Single Signal”, “Corridor”, and “Region”. 
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4.3.2. Offline Datasets 

We use realistic traffic networks in the cities of Cologne and Ingolstadt as the test cases. These two 
cases are widely used SUMO scenarios “TAPAS Cologne” [109] and “InTAS” [110]. See Fig. 4.2 for 
illustration of these two test cases (Figure credit: RESCO Github Repository [9]). 

In offline RL, the offline dataset, which the offline RL algorithm trains on, has a significant impact on the 
performance. We generate five datasets for each of the six test scenarios.  

• Fixed-Time: a dataset collected by running the default fixed phase duration in SUMO; 
• Max-Pressure: a dataset generated by running the max joint pressure algorithm [26]; 
• Greedy: a dataset generated by running the max joint queue length and vehicle count algorithm 

[27]; 
• Expert-DQN: a dataset generated by running the DQN algorithm in Chapter 3; 
• Expert-PPO: a dataset generated by running the PPO algorithm in Chapter 3. 

Note that we call the last two datasets “expert” because they are generated by optimized RL algorithms. 

4.3.3. Offline RL Algorithms 

We test two offline RL algorithms, Behavior Cloning (BC) and Monotonic Advantage Re-Weighted 
Imitation Learning (MARWIL) [48]. Below is a brief description of these two algorithms 

• Behavior Cloning (BC) - Behavior cloning learns the policy directly from a dataset of expert 
trajectories by mimicking the expert’s actions. In other words, it treats the RL problem as a 
supervised learning task, where the data is the state and the label is the action. BC aims to 
predict the action given the state with high accuracy. No reward is needed in BC.  

• Monotonic Advantage Re-Weighted Imitation Learning (MARWIL) [48] - MARWIL is an 
extension of behavior cloning by incorporating the reward signal. More specifically, it weights 
the action by an advantage function that reflects the reward of this state-action pair. As a 
result, it puts higher weights on the trajectories that yield higher rewards. 

We chose these two algorithms because they are classic offline RL algorithms with stable 
implementations in Rllib [24]. 

4.4. Test Results 

Table 4.1 summarizes the performance of the offline RL algorithms under all six test scenarios and all 
five offline datasets. We evaluate each algorithm under 30 combinations of test scenarios and offline 
datasets. All delay values are the average over 10 random trials. 

Below are key observations from our extensive performance evaluation. 

• Overall, we can observe an increased delay compared to online RL algorithms reported in [9]. 
This is expected because offline RL algorithms do not interact with the network online. 

• The quality of the offline datasets has a large impact on the performance of the offline RL 
algorithms. Both offline RL algorithms perform much better when trained on datasets generated 
from expert policies (DQN and PPO). This is reasonable, because the two offline RL algorithms 
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are basically imitation learning algorithms and aim to mimic the behavior of the policy that 
generated the dataset. 

• MARWIL performs slightly better than BC in the majority of the scenarios (24 out of 30 
scenarios). However, the differences are smaller (usually around 1–2 seconds). Given that the 
values are averaged over 10 trials only, the statistical significance may not be high enough to 
make a definitive conclusion that MARWIL is better than BC. 

 

Table 4.1 Performance of offline RL algorithms on test cases. The metric is delay (in seconds). For each 
data point, we run 10 random trials and report the average value. For each algorithm, we show the best 

results obtained from the one with the best hyperparameters. 
Cologne – Single Signal 

 Fixed-Time Max-Pressure Greedy Expert-DQN Expert-PPO 
BC 68.1 51.4 74.7 39.3 69.4 

MARWIL 67.3 49.2 75.3 36.9 67.4 
Cologne – Corridor 

 Fixed-Time Max-Pressure Greedy Expert-DQN Expert-PPO 
BC 60.3 107.3 182.5 31.2 33.4 

MARWIL 60.1 102.5 177.2 30.1 31.7 
Cologne – Region 

 Fixed-Time Max-Pressure Greedy Expert-DQN Expert-PPO 
BC 81.8 38.2 64.1 30.6 31.9 

MARWIL 79.1 40.5 62.9 30.3 30.2 
Ingolstadt – Single Signal 

 Fixed-Time Max-Pressure Greedy Expert-DQN Expert-PPO 
BC 56.3 48.6 30.2 30.9 28.8 

MARWIL 55.3 47.3 30.9 29.1 27.9 
Ingolstadt – Corridor 

 Fixed-Time Max-Pressure Greedy Expert-DQN Expert-PPO 
BC 128.7 101.6 70.3 44.8 42.1 

MARWIL 125.8 99.6 69.3 42.9 43.1 
Ingolstadt – Region 

 Fixed-Time Max-Pressure Greedy Expert-DQN Expert-PPO 
BC 182.6 179.4 99.5 78.4 83.2 

MARWIL 180.1 177.6 98.3 79.8 84.3 
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CHAPTER 5. PRELIMINARY RESULTS ON FEDERATED LEARNING 

Federated learning (FL) is an emerging technique that enables multiple agents to collaboratively train a 
machine learning model with local data only. In other words, the agents do not share data, resulting in a 
major advantage of FL in preserving data privacy. In many RITI communities, data privacy and ownership 
are critical concerns. Centralizing traffic data for RL training might face resistance due to legal, cultural, 
or privacy reasons. By using federated learning, data can remain on local servers at each community’s 
intersection, while only model updates are shared across locations. This approach mitigates privacy risks 
while still allowing for collaboration to improve the global model. 

In our preliminary results [111], we proposed a novel distributed stochastic gradient descent method for 
federated learning. Our method sparsifies each gradient descent step to optimize the convergence 
performance by balancing the trade-off between communication cost and convergence error. It 
performed well on general image classification tasks using the MNIST, CIFAR-10 datasets. We also 
demonstrated that the proposed adaptive Top-K algorithm in SGD achieves a significantly better 
convergence rate compared to state-of-the-art methods on multi-robot collaboration tasks. 

It would be an interesting future direction to study federated reinforcement learning in intersection 
management. 
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CHAPTER 6. CONCLUSION 

This study investigated the use of reinforcement learning for adaptive traffic signal control, with a focus 
on addressing the unique challenges faced by RITI communities, such as extreme weather events. Our 
evaluations revealed that DQN and PPO outperformed other algorithms in minimizing traffic delays, 
while offline RL algorithms like MARWIL and BC showed improved performance when trained on high-
quality datasets from expert policies. The results underscore the importance of using advanced RL 
algorithms and high-quality training data to address the complexities of traffic management in 
challenging environments. 

We would like to note several limitations of our study and directions of future works. 

• It is well known that the performance of RL algorithms are highly stochastic [112]. In our 
experiments, we use a limited number (10) of random trials due to the large number of test 
scenarios. In the future study, it is important to perform more comprehensive experiments to 
ensure the statistical significance of our findings. One promising approach is to integrate our 
code with existing repositories (e.g., rliable [112]) that specializes in performance analysis of RL 
algorithms. 

• We tested two offline RL algorithms, both of which are based on imitation learning. It is crucial 
to test other recent offline RL algorithms that aim to surpass, instead of mimicking, the policy 
that generates the offline dataset. We can integrate with emerging repositories with 
implementation of recent offline RL algorithms, such as d3rlpy [113] and CORL [114]. 

• It is important to establish a set of well-recognized datasets and performance benchmarks to 
study the performance of offline RL algorithms in intersection management. 
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APPENDIX A HYPERPARAMETER OPTIMIZAITON IN EVALUATION CASES 

During hyperparameter optimization, we randomly choose 50 sets of hyperparameters (i.e., learning 
rate, coefficient of policy entropy, neural network architecture, etc.) for each algorithm. In Table A.1, we 
show the best average delay and the number of trials that hit the target delay for each algorithm. This 
provides more detailed statistical information about the hyperparameter optimization. 

Table A.1 We show some detailed statistics of the algorithm performance during hyperparameter 
optimization, in terms of the number of hyperparameter settings under which the algorithm achieves 

certain thresholds. 
4 x 4 Grid – 3 Lanes 

 Best Delay < 25 Delay < 30 Delay < 35 Delay < 40 
ARS 50.0 0 0 0 0 
A2C 47.3 0 0 0 0 
DQN 21.2 5 24 26 28 

QR-DQN 33.0 0 0 8 13 
PPO 22.1 3 20 21 25 

TRPO 26.3 0 8 15 17 
4 x 4 Grid – 2 Lanes 

 Best Delay < 25 Delay < 30 Delay < 35 Delay < 40 
ARS 135.6 0 0 0 0 
A2C 117.8 0 0 0 0 
DQN 83.7 3 9 25 34 

QR-DQN 100.7 0 0 10 21 
PPO 80.8 5 15 28 35 

TRPO 95.6 0 3 12 22 
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APPENDIX B PYTHON IMPLEMENTATION 

The code in this project is built on SUMO-RL [8] and RESCO [9]. We made modification so that we can 
train the RL algorithms in the framework of RL Baselines3 Zoo [115]. 

All the code and data will be made publicly available on this GitHub repository:  

https://github.com/yuanzhangxiao/sumo-rl-zoo 
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