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EXECUTIVE SUMMARY 

In 2023, the first segment of the Skyline Rail System in Honolulu, Hawaii (Kualaka'i East Kapolei Station to 
Aloha Stadium Station) officially went into service. This rail system represents a significant investment in 
urban transportation infrastructure aimed at alleviating traffic congestion and enhancing mobility on the 
island of Oahu. Skyline stations face forecasted ridership that predominantly lives in West Oahu, such as 
East Kapolei and Waipahu, where RITI (rural isolated tribal and indigenous) passengers have higher 
percentages relative to the Honolulu urban core. Additionally, the combination of high passenger 
volumes and location of stations next to highway facilities may require the construction of a grade 
separation structure for pedestrians. 

In this project we developed a framework and approach for estimating pedestrian flow rates at transit 
stations. This framework supports the design and planning of pedestrian paths surrounding transit stops 
in heavily congested areas with high volumes of vehicle traffic. Jurisdictions deciding among 
infrastructure investments can benefit from understanding the tradeoffs between route attributes that 
pedestrians face, especially those related to the environment and infrastructure, such as providing a 
sidewalk versus an open grass area or more tree shading. 

To construct and test our proposed framework, we conducted an experiment on pedestrian route choice 
at the campus of the University of Hawaii at Manoa, where walking is a predominant mode of 
transportation. We developed a GIS based framework for pedestrian network construction, which takes 
multiple data sources, such as open source networks (e.g., OSM), satellite imagery, and pedestrian GPS 
traces. The pedestrian route choice study examines the impact from tradeoffs between environmental 
and infrastructure attributes, such as ambient noise, tree canopy shade, and surface characteristics (e.g., 
sidewalk, grass, etc.). We collected and analyzed GPS data from volunteer community members of the 
University, resulting in 298 distinct observed origin-destination (OD) trips and their routes. 

From a random utility model (RUM) route choice standpoint, choice set generation is a difficult problem, 
especially for on-campus walking which is unrestricted and can deviate from discrete roadways or 
sidewalks. Thus, a recursive logit route choice model is estimated to determine the tradeoffs between 
route link attributes, such as ambient noise, tree canopy shade, and other infrastructure attributes. The 
recursive logit model is a link-based model, which formulates the route choice problem as link choice 
problem at each node. The estimated recursive logit model and network construction framework were 
then applied to four identified Skyline stations to analysis the pedestrian route choice behavior when 
accessing the stations. The estimation results indicate that sidewalks, grass surfaces, and a tree canopy 
are preferred over links that traverse quadrangles. Pedestrians have a higher likelihood of choosing a 
route with more sidewalks, grass surface and less sun exposure. With respect to noise, traversing 
quadrangles and parking lots is preferable than sidewalks, grass surface, and tree canopy. 

Finally, an individual pedestrian network was constructed for each identified Skyline station to cover the 
point of interests in walking distance. Ten OD pairs were selected for pedestrian flow distribution 
analysis at each station. We applied our final model specification to calculate the pedestrian flow 
distribution on the network. We found that as pedestrian traffic needs to cross major highways to access 
the Skyline stations at Waiawa Pearl Highlands, Kualaka'i East Kapolei, and Keone’ae U.H. West Oahu, 



2 
 

and given that the Skyline ridership is expected to increase in the future, this issue might become a 
major risk to pedestrian safety. 
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CHAPTER 1. INTRODUCTION 

Providing sustainable options to travelers continues to motivate discussion on prioritizing infrastructure 
investments for active travel modes at all jurisdiction levels, from cities to the US states. The City and 
County of Honolulu (CCH) and the Hawaii Department of Transportation (HDOT) have developed and 
adopted pedestrian master plans, with similar efforts in other US jurisdictions (CCH Department of 
Transportation Services, 2022; Hawaii Department of Transportation, 2013). Walking as a travel mode is 
a low-cost, accessible, and sustainable way to travel short distances, particularly within dense urban 
areas and campuses with limited vehicle access. Additionally, walking, as an active travel mode, is 
associated with improvements in physical and mental health compared to passive modes, like driving 
and public transit (Singleton, 2019). For the UH-Manoa (UHM) campus, walking accounts for 25% 
percent of commute trips to campus, according to their Campus Travel Demand Management Plan 
(University of Hawai’i at Manoa, 2012). In the Waikiki Special District, walking accounts for 56% percent 
of visitor trips (CCH Department of Transportation Services, 2022; Hawaii Department of Transportation, 
2013). Jurisdictions deciding among infrastructure investments can benefit from understanding the 
tradeoffs between route attributes that pedestrians face, especially those related to the environment 
and infrastructure, such as providing a sidewalk versus an open grassy area or more tree shading. A 
route choice analysis for major origin-destination (OD) pairs in a network can also help prioritize 
attributes relevant in a pedestrian’s route choice process and support design decisions. These require 
forecasting tools for making well-informed, consistent assessments of future conditions under various 
scenarios, specifically the relationship between the routes pedestrians choose and other network 
attributes. Behavioral models are at the heart of these tools. Methodologically, this requires models to 
better understand and forecast different behavioral rationales in response to attributes faced by 
pedestrians, such as noise level, tree shade, and infrastructure topography.  

In 2023, the first segment of the Skyline Rail system (Kualaka'i East Kapolei Station to Aloha Stadium 
Station) was officially in service. This project represents a significant investment in urban transportation 
infrastructure aimed at alleviating traffic congestion and enhancing mobility on the island of Oahu. 
Skyline stations face forecasted ridership that predominantly lives in West Oahu, such as East Kapolei 
and Waipahu, where RITI (rural isolated tribal and indigenous) passengers have higher percentages 
relative to the Honolulu urban core. Additionally, the combination of high passenger volumes and 
location of stations next to highway facilities may require the construction of a grade separation 
structure for pedestrians. For example, the Waiawa Station may need high-capacity crossover access for 
large volumes of passengers that need to cross the Kamehameha Highway to reach the Pearl Highlands 
Shopping Center. The Federal Railroad Administration (FRA) recommends that railroads with busy 
passenger stations located on multi-track rail lines with frequent freight service should investigate the 
application of a high-capacity grade separation structure to carry large volumes of pedestrians. 

In this project, we developed a framework and approach for estimating pedestrian flows distribution at 
identified Skyline transit stations. To construct and test this framework, we conducted an experiment on 
pedestrian route choice at the campus of The University of Hawaii at Manoa (UHM), where walking is a 
predominant mode of transportation in this area. This project makes three contributions.  
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(i) First, we present a method for generating and updating an underlying pedestrian 
network from GPS traces. As an illustrative case, we collect and analyze GPS traces from 
volunteer community members at UHM, resulting in 298 observed routes across the 
UHM campus and its surrounding neighborhood. 

(ii) Second, we model pedestrian route choice with a recursive logit, avoiding the need for 
choice set generation, and analyze the effect of multiple attributes on pedestrians’ route 
choice behavior. This is a specific advantage since pedestrian networks are complex due 
to a wider range of movement across spaces, such as open plazas and grass areas. 

(iii) Third, we apply our findings at identified Skyline transit stations. Detailed pedestrian 
network is developed at each identified station. We calculate pedestrian flow 
distribution for pedestrian traffic accessing the stations with our calibrated recursive 
logit model.  

The remainder of this report is structured as follows. In section 2, we present previous works in this field. 
In section 3, we discuss the experiment conducted at UHM, this includes GPS trace collection and 
processing, the study area, and the network generation including link attributes. This is followed by a 
presentation on the recursive logit. In section 4, we present and discuss the estimation results from the 
recursive logit model for pedestrian route choice. In section 5, we present the pedestrian flow 
distribution analysis at identified Skyline transit stations. Finally, in Section 6, we provide our concluding 
remarks. 
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CHAPTER 2. REVIEW OF LITERATURE 

2.1 Pedestrian Route Choice 

Past mode choice studies indicate that walkability which measures walk friendliness is important in 
pedestrian route choice. Additionally, environments with walkability positively influence destination 
choices, pedestrians tend to choose destinations with better pedestrian environments (Clifton et al., 
2016). The literature indicates that pedestrians tend to choose paths that are safe (Amoh-Gyimah et al., 
2016), comfortable, and pleasant to walk on (Guo, 2009; Ryan and Frank, 2009; Tal and Handy, 2012). 
One important dimension of walkability is environmental quality, which has been measured with 
roadway and/or infrastructure attributes, in addition to environmental conditions, such as noise, sunlight 
and other qualitative factors. Previous studies agree on common factors, such as distance, amenities 
(e.g., side places to sit/rest), sidewalk width, sunlight exposure, noise exposure, street network 
connectivity, number of turns and crossings, crossing types, etc. (Bovy and Stern, 2012; Guo and Loo, 
2013; Sevtsuk et al., 2021; Singleton et al., 2021; Tal and Handy, 2012). However, these studies do not 
provide insights into the tradeoffs among these factors, which can support infrastructure investment 
decisions that face a fixed money budget.  

Because of its human-scale, pedestrian walking experiences are shaped by attributes differently from 
drivers, emphasizing those relating to personal exposure. Previous studies consistently show that besides 
minimizing travel time and distance, other built/natural environment and land use characteristics also 
statistically explain route choices that deviate from the shortest path (Guo and Loo, 2013; Lue and Miller, 
2019; Sevtsuk et al., 2021). Studies indicate that noise levels negatively impact pedestrian route choices, 
with pedestrians avoiding noisy routes, in general (Base et al., 2022; Basu and Sevtsuk, 2022; Bovy and 
Stern, 2012). Guo and Loo (2013) conducted studies in Hong Kong and New York City, which identified 
noise as an explanatory factor for comfort in pedestrian route choice (Guo and Loo, 2013). de Jong and 
Fyhri (2023) conducted a geospatial survey using the Google Maps API, revealing that noise contributes 
to an adverse experience for cyclist in urban networks, potentially leading to sensory overload; a similar 
impact on pedestrians is expected. Wang et al. (2020) proposed a network routing model which 
integrates traffic noise; this model aims to minimize noise exposure along generated routes. They 
developed a traffic estimation model that incorporates multiple datasets to estimate the network traffic 
volumes. Using a modified version of Dijkstra’s shortest path algorithm, they generated routes 
constrained by both distance and noise exposure (Wang et al., 2020).  

Current approaches to route choice analysis using random utility model (RUM) discrete choice models 
are roughly categorized as either path-based or link-based approaches. In previous studies, path-based 
models were more conventional, but face significant barriers (Prashker and Bekhor, 2004; Vovsha and 
Bekhor, 1998; Zimmermann et al., 2017). In dense urban areas, a complex network can have an 
unlimited number of paths connecting a single OD pair, if loops are allowed (Bekhor, 2006; Ghanayim 
and Bekhor, 2018; Prashker and Bekhor, 2004; Zimmermann et al., 2017). For route choice model 
estimation, a choice set for each OD pair needs to be defined (Zimmermann et al., 2017). This leads to a 
well-known challenge associated with path-based models called the route choice set generation problem 
(Ramming, 2001). There are several methods commonly used for choice set generation, such as K-
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shortest paths (Eppstein, 1998), route labeling (Ben-Akiva et al., 1984), link elimination (Azevedo et al., 
1993), link penalty (Barra et al., 1993), and data driven methods (Yao and Bekhor, 2020). The K-shortest 
path method finds a given number (K) of paths that are longer than the shortest path for a given OD pair 
(Bekhor et al., 2006; Eppstein, 1998). The route labeling approach exploits the availability of path 
attributes to formulate different functions that produce alternative routes. These routes may be labeled 
according to criteria such as “minimize distance,” “minimize turns” or “maximize use of expressways” 
(Bekhor et al., 2006; Ben-Akiva et al., 1984). The link elimination method removes links at each iteration 
and finds the new shortest path after link removal (Azevedo, 1993; Sevtsuk et al., 2021). In recent years, 
machine learning-based approaches such as clustering, random forests (Yao and Bekhor, 2020), decision 
trees (Ciscal-Terry et al., 2016), multiple types of neural networks (Lai et al., 2019; Sun and Park, 2017), 
and autoencoders (Yao and Bekhor, 2022) have also been used for choice set generation. An alternative 
to path-based approaches is a link-based recursive approach, discussed later in Section 2. 

2.2 Pedestrian Network Modeling 

Past studies focusing on pedestrian networks are extremely rare relative to other active travel modes, 
such as transit and cycling (Broach et al., 2012; Casello and Usyukov, 2014; Raveau et al., 2011). These 
studies fall under two broad categories: (a) studies focused on generating the underlying physical 
network and (b) studies focused on flow dynamics and congestion. Unlike motorized traffic, pedestrians 
can move freely through lawns, parking lots, buildings, open plazas etc. Using a conventional discrete 
network representation, such as networks from OpenStreetMap, to approximate pedestrian traffic may 
be unsatisfactory. Methods for generating a precise underlying network are roughly categorized as: (a) 
manual digitization; (b) aerial image processing; and (c) crowdsourced mapping. Hu et al. (2007) 
developed an aerial image-based two-step automatic road network extraction method. Their method 
shows promise in extracting networks that follow the observed roads, but face limitations for extracting 
off-road paths. Kasemsuppakom and Karimi (2013) developed a method to construct pedestrian network 
from multiple GPS traces. They use the geometric properties of GPS points for filtering and merging 
traces. Zhou et al. (2020) developed an approach for pedestrian network construction based on 
crowdsourced walking trajectories. They convert GPS traces into density maps, where a high density was 
considered a walkway, similar to the process in this study.   

Pedestrian flows have received moderate attention in the transportation systems literature. Daamen et 
al. (2002) and Hoogendoorn and Bovy (2004, 2005) both focused on pedestrian flow in transit stations. 
Their model dynamically incorporates real-time data to optimize station layout and timetable design to 
improve flow efficiency. Hoogendoorn et al. (2015) developed a multi-class continuum model to address 
pedestrian flow dynamics. Their model differentiated between global and local route choices, capturing 
pedestrian self-organization, such as lane and diagonal stripe formation. Saberi et al. (2015) used 
empirical data to study pedestrian behavior in bidirectional streams. They show that self-organization 
strongly influences the velocity distribution and for the same crowd size, and that velocity distributions 
are similar regardless of whether pedestrians are mixed or in separated lanes. Shahhoseini et al. (2018) 
used empirical data and simulation models to analyze the interactions and adaptations of pedestrians as 
they merge from different streams. They conclude that increased density at merger points can lead to 
reduced speeds and increased travel times. 
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Zhang et al. (2021) developed a framework for designing pedestrian guideways that improve traffic 
efficiency and safety under congested overcrowded conditions. They use a set of nonlinear partial 
differential equations to describe pedestrian route choice under a Nash Equilibrium and present 
numerical examples to show its effectiveness. Feliciani and Nishinari (2018) developed a trajectory-based 
method for measuring pedestrian crowd levels based on the velocity field around a region of interest. In 
their experiment, the experimental area was divided into small cells, and a velocity vector field was 
obtained from the pedestrian trajectory data. Their method was able to detect congestion in a periodic 
bidirectional stream where density and flow did not vary significantly, and which could not be studied in 
detail using the fundamental diagram. Zanlungo et al. (2023) developed a simpler approach named the 
Congestion Number based on the differentials of velocity field. Their experiment showed that the 
Congestion Number can be applied to various settings, such as bottlenecks and places with multi-
directional flows. 

2.3 Synthesis and Summary:  

A literature review on pedestrian route choice indicates that several factors relating to the infrastructure 
and perceived environment affect choices. However, few studies attempt to estimate the tradeoffs 
among these factors estimated from actual route choice data. From the standpoint of investing in 
infrastructure, understanding these tradeoffs helps determine the return on investment for different 
designs and facilities, relative to other factors. For example, understanding tradeoffs between noise 
levels on a paved walkway versus other walkway types allows prioritizing for minimizing the negative 
impact from ambient noise. In this project we examined pedestrian route choices and the tradeoffs they 
make with respect to network link attributes, such as shade coverage from tree canopies and the 
infrastructure topography, with the end goal of informing investment decisions. 
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CHAPTER 3. METHODOLOGY AND MODEL CONSTRUCTION 

This section discusses the pedestrian route choice study conducted at the UHM campus. This includes 
data collection and processing, and the recursive logit approach to route choice modeling. The overall 
analysis framework is presented in Figure 1.  The framework begins with collecting actual route choice 
data and updating an initial network graph representing pedestrian travel with these data. In this case, 
OpenStreetMap (OSM) was used to provide an initial network graph. Given an updated network graph, 
we perform map matching between the observed routes and the updated network to generate a route 
choice data set for further analysis. 

3.1 Study Area:  

A map of the study area is provided in Figure 2 and was determined based on multiple factors, including 
the official university campus boundary and feasible walking distances to this boundary. For the 
University of Hawaii at-Manoa (UHM) campus, walking accounts for 25% percent of commute trips 
to/from campus (University of Hawai’i at Manoa, 2012). Empirically and anecdotally, we observed 
pedestrians taking paths at multiple locations where those paths are not covered in the initial OSM 
network graph. Also shown in Figure 2 is a density plot over the collected GPS trace data, with darker red 
areas indicating a higher concentration and yellow areas indicating lower concentration of traces. In 
specific sections of the study area, the sidewalk network does not align with the heavy walking traffic 
areas.
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Figure 1. Analysis Framework 
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Figure 2. University Campus Study Area and Collected GPS Trace Data Densities 

3.2 GPS Trace Data Collection and Processing for Route Choice Modeling 

This section presents the process for collecting GPS trace data from study participants and the 
subsequent data processing for generating a route choice dataset. These data were integrated with a 
publicly available network graph, in this case from OpenStreetMap (OSM), to generate an updated 
pedestrian network graph that was attributed for subsequent analysis and model estimation. 
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3.2.1 GPS Data Collection 

Personal GPS data collection was initiated with 55 community volunteers drawn from the College of 
Engineering. However, due to participant attrition and data logging errors, only GPS trace data from 16 
volunteers were retrained for analysis. Recruitment was accomplished through student organization and 
staff email listservs. Data collection occurred only on weekdays for a two-week period in April 2023. During 
this period, participants started logging GPS data daily, when they first left their homes and stopped when 
they returned home without returning to campus for the remainder of the day. GPS points were logged in 
two second intervals. Participants were asked to install a free GPS data logging app on their smartphones 
to accomplish this, either UltraGPSLogger for Android or TripLogger Remote for iOS. 

3.2.2. GPS Data Processing 

After collecting the data, processing the GPS traces occurs in three main steps that work towards 
removing points that have unacceptable measurement errors or are irrelevant to route choice. 
Additionally, once a pedestrian network is generated, route choice data is generated by matching 
observed GPS traces with the network, outputting an actual route in our graph network. 

Step 1 – Remove GPS points with Intolerable Measurement Errors and Irrelevant to Route Choice: The 
first step requires removing a subset of GPS points for one of two reasons: (a) they were logged with 
potential receiving errors or (b) they clustered within a building and were irrelevant for route choice 
analysis. However, GPS points that are part of routes that traverse through a building were retrained. 
Measurement errors for GPS points occur for several reasons, including interference from 
clouds/buildings/windows and insufficient satellites within range to triangulate a position (Merry and 
Bettinger, 2019). Points were filtered for potential receiving errors based on the horizontal dilution of 
precision (HDOP), GPS points with HDOP value greater than 15 were filtered (Kasemsuppakorn and 
Karimi, 2013). HDOP reflects the geometric strength of the configuration of satellites relative to a 
receiver, which quantifies the level of accuracy in horizontal position readings (Langley, 1999). To remove 
building interior points (that were not part of a traversing route), a shapefile of building boundaries, 
from UH Facilities, was used in GIS to remove points falling inside the boundaries within a two-meter 
buffer, but not clustered (which would indicate an activity). These were considered indoor points and 
removed.  

Step 2 – Distinguishing between Travel and Activity: To distinguish between points comprising travel from 
other activities, the method based on spatial point density from Schüssler and Axhausen, (2008) was 
adopted. When the participant is relatively stationary, indicating an activity, the GPS points will cluster 
closely within a small area, leading to a high density (Schüssler and Axhausen, 2008). For each GPS point, 
the point density is calculated by determining how many of the 30 preceding and succeeding GPS points, 
based on timestamps, are within a 15-meter radius of the point of interest (Schüssler and Axhausen, 
2008). If the density is greater than 15 points with a 15-meter radius circular area, for at least 3 minutes, 
then an activity is detected. If two detected activities are close spatially to each other, and the time gap 
between them is less than 2 minutes, then the activities are merged. Finally, if the time gap between two 
consecutive points is greater than 5 minutes, then the trajectory is separated into two trips.  
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Step 3 – Distinguishing between Walking and Non-Waking Trips: The final step labels trip segments with 
a travel mode, specifically walking versus other (non-walking) modes. A neural network model was 
developed for this purpose. This neural network was developed as a binary classification model, the 
classification output was either pedestrian or non-pedestrian. Identifying the exact GPS (single) point 
where travel mode changes is difficult because of short recording intervals and natural errors of GPS 
recording. Additionally, an individual generally would not change mode very frequently. Hence, the trip 
data was divided into continuous small pieces, each piece contains roughly 20 seconds of data. 
Attributes used to classify trip segments were average speed, standard deviation of speed, maximum 
speed, and standard deviation of acceleration for each divided data piece (Byon et al., 2009; Yang et al., 
2015). Each piece would be identified as either pedestrian or non-pedestrian. A sliding window 
algorithm was applied to identify the mode change location. If a mode change is identified, then input 
trip data is separated there to account for different modes. At this stage, all pedestrian trips have been 
identified from the GPS trace data.  

Figure 3 illustrates these data processing steps. Figure 3a shows raw GPS trace data from a participant. 
Examples of clusters of points falling within buildings and those with potential receiving errors are 
indicated. Figure 3b illustrates the results from Step 1, where points are removed based on unacceptable 
HDOP values or because they fell within buildings. Figure 3c shows Step 2 which segments points into 
travel and activities. Figure 3d shows Step 3, where travel segments are classified into walk and non-walk 
modes by the neural network. 

                                                                                      

(a) Raw Participant Data (b) Step 1 
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Figure 3. GPS Data Processing (a) Example of raw GPS data; (b) Step 1: HDOP and building point filtering; 
(c) Step 2: travel and activity segmentation; (d) Step 3: walking and non-walking segment classification 

3.3 Network Generation and Matching 

The network generation and map matching processes were conducted in a GIS environment. The 
purpose of these procedures is twofold. First, we wish to generate a pedestrian network graph (links and 
nodes) with link attributes (e.g., sidewalk links) that represent the space over which pedestrians move. 
Second, given this network, we match observed time-stamped GPS point data with the updated network 
to produce observed routes between OD pairs from our sample. The process begins with an initial 
“base” network from OpenStreetMap (OSM). The OSM network is incomplete and inaccurate, missing 
several segments that were traversed in the observed routes. This shortcoming has been documented in 
the literature (Lu and Zhou, 2023). Table 1 presents this process in greater detail. 

Table 1: Network Generation and Matching Process 

Main Steps Example Image 
0. Obtain Initial Pedestrian Path Shapefile – The 

network generation process begins with obtaining an 
existing path shapefile, which may be insufficient for 
pedestrian analysis due to missing links used 
commonly for walking. For this study an appropriate 
existing shapefile (or geospatial data source) was 
unavailable from the City/County of Honolulu (CCH). 
Additionally, the shapefile from OpenStreetMap 
(OSM) was incomplete/inaccurate for the study area 
(Lu and Zhou, 2023). Thus, the authors manually 
created a shapefile of existing sidewalks in the study 
area, shown to the right with blue paths indicating 
sidewalks only. 
 

 

(d) Step 2 (c) Step 3 
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1. Augment with Observed Paths from GPS Trace Data 
– Next, we augment the initial shapefile with the 
collected GPS trace data, which may traverse areas 
beyond sidewalks or initial coverage. GPS traces were 
clipped with a five-meter buffer around the existing 
path shapefile to account for inherent error in 
smartphone collected GPS data. The image to the 
right shows the initial path shapefile (blue) 
augmented with clipped GPS traces from study 
participants (red); many traversed the parking lot 
(gray). 

 

2. Estimate Line Density – Given an augmented path 
shapefile, we estimate a density over the clipped GPS 
trace data to determine segments with significant 
traffic. For this paper, the line density was estimated 
within ArcGIS using the following parameters to 
create the raster: (a) pixel size of one meter; (b) search 
radius of five meters. In the image to the left a density 
is shown for the previous GPS traces used for 
augmentation; darker areas indicate higher observed 
traffic. 

 

3. Raster to Polygon Conversion – In order to determine 
the location of links for augmenting the initial path 
shapefile, a threshold for a “significant” density value 
was assumed and used to obtain a polygon or area of 
the density meeting this threshold. For this paper, we 
used “Jenks natural breaks classification,” which 
clusters data into groups to minimize variance within 
groups and maximize the variance between them 
(Chen et al. 2013; Delso et al., 2017). The raster data 
was classified into two classes using the Jenks 
method to distinguish between higher and lower 
traversed areas. The resulting reclassified raster data 
was converted to polygons.  

 

4. Augmenting Path Creation and Network Updating – 
Centerlines which represent high pedestrian activity 
areas not covered in the existing network were 
created by drawing a centerline through the polygons 
from Step 3. The image to the right shows the 
centerline (black) from the polygon from Step 3. This 
represents areas of high pedestrian traffic not 
captured by the initial path shapefile.  
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5. Conversion to a Graph (Links and Nodes) -In this step, 
the created paths shapefile from Step 4 was 
converted to a graph of links and nodes, which serves 
as the representation of a network for this paper. 
The shapefile was first assessed for topology errors, 
such as lines that intersect with themselves. The 
resulting graph includes edges representing links 
(light blue) for pedestrian travel and nodes (dark 
blue) connecting the links where travel from one 
edge to another is possible. 

 

6. Network (Map) Matching – Given the graph which 
serves as our network topology, the final step 
matches observed GPS traces consisting of points with 
the graph shapefile from Step 5 to determine 
observed paths. This was performed using the ArcGIS 
Network Analysis tool. The shortest route between an 
OD pair with intermediate points from the participant 
are calculated and exported as shapefiles for each 
trip; this is the observed route for the participant for 
a specific OD. 

 

 

3.4 Determining Link Attributes  

As described in Step 5 of Table 1 above, links were created from the conversion of the paths shapefile to 
a graph of links and nodes. For further pedestrian route choice modeling, links need to be attributed 
beyond distance. The link attributes used in this study and corresponding generation methods are as 
follows: 

a) Length: The length of each link in the network was measured and determined in GIS; 
b) Paved Sidewalk: Determined with a walking audit and satellite imagery from Google Maps; 
c) Gradient/Slope: Determined by dividing the difference in elevation of the nodes at either link end, 

based on the U.S. Geological Survey (USGS) 10m DEM data; 
d) Tree Canopy: For the Island of Oahu, tree canopy data is provided through a partnership between 

EarthDefine LLC, US Forest Service, National Oceanic and Atmospheric Administration (NOAA), and 
Hawaii Division of Forestry and Wildlife (EarthDefine LLC, 2021). The raster data for tree canopy were 
converted to a polygon shapefile for analysis; 

e) Traversing Parking Lots, Grass, and Quadrangles: Determined with a walking audit. We define a 
quadrangle as a space or a courtyard, usually rectangular in plan, the sides of which are entirely or 
mainly occupied by parts buildings (Fleming et al., 1980); and 

f) Noise Level: The noise data collection and interpretation process are discussed in detail in the next 
section.  

Links were attributed as binary indicator variables based on the percentage of the link possessing the 
attribute of interest. For example, a link was labeled as “tree canopy” (with the binary variable taking a 
value of one) if 50% or more of a link was covered by a tree canopy.  
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3.5 Noise Data Collection and Processing 

Noise Data Collection: 39 noise data collection locations were used to cover the campus study area using 
a grid system (Figure 4). The noise level for each location was measured six times per day (7:30, 9:30, 
11:30, 13:30, 15:30, 17:30) for weekdays using a Tadeto SL 720 Digital Sound Level Meter sound 
measurement device. This device has a recording capability ranging from 30 dB to 135 dB, and an 
accuracy of +/-2 dB and a sampling rate of 0.125 seconds. The noise data was collected during the Fall 
2023 semester. Although the noise measurements were collected after the GPS data collection study 
completed, both were collected during the regular semesters. We assume these noise conditions are 
consistent across these two time periods.  

Noise Data Processing: A GIS-based workflow was developed to interpolate the point-based noise 
measurement into a raster surface that permits attributing links. The Kriging method was used to 
interpolate point noise measurements to a spatial distribution. This method assumes the distance 
between sample points reflects a spatial correlation; it is appropriate when there is a known spatially 
correlated distance or directional bias in the data (Oliver and Webster, 1990). Aumond et al. (2018) 
conducted a sound measurement experiment in Paris and demonstrated that the Kriging is a promising 
method to create sound maps. Gundogdu and Guney (2007) employed universal Kriging to perform 
spatial analysis of groundwater levels; Wu and Li (2013) used Kriging to interpolate the air temperature 
in the US. After applying Kriging, the noise distribution was segmented into multiple noise levels, each 
with a 5 dB increment. Noise level segments were assigned to the links. If a link is completely within the 
boundary of a certain noise category, then this noise level is assigned to the link. If a link traverses two 
noise categories, the noise level for this link is determined by computing a weighted average, where the 
weights correspond to the proportion of distance the link traverses each noise category. Figure 4 shows 
the interpretation boundary and a noise distribution for a Wednesday morning period. The average 
noise level for the morning period is 63.66 dB, while the average noise level for the afternoon period is 
62.41 dB. 
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Figure 4. Noise Interpolation over the Study Area 

3.6 Network and Route Attributes 

The final updated network has 1,354 links and 1,084 nodes. The total distance for the network is 61,851 
meters. Multiple link attributes were assigned: (a) link length; (b) link average grade; (c) sidewalk; (d) 
grass; (e) quadrangle; (f) tree canopy; (g) parking lot; and (e) noise level. Table 2 summarizes the 
network attributes. GPS traces from 55 volunteer community members were collected for a two-week 
period in April 2023. After processing the data, we only retained data from 16 participants with 
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acceptable GPS data quality and logging consistency. The final analysis sample consists of 298 trip OD 
pairs and routes. There are 67 unique OD pairs. The longest observed route was 1,791 meters, while the 
shortest observed route is 80 meters. The average observed route distance is about 532 meters. A 
summary of the observed route statistics was presented in Table 3. Only about 23.5% of the observed 
routes are similar within a tolerance to the shortest routes, which implies that in addition to distance, 
other attributes also play an important role in pedestrians route choice. 

Table 2: Network Characteristics 

Network Attributes Percentage of Network Distance by Attribute 
Number of Links 1,354 Paved Sidewalk 79.3% 
Number of Nodes 1,084 Grassy Surface 1.9% 
Total Distance (meters) 61,851 Quadrangle 17.3% 
Min Spanning Tree (meters) 39,395 Tree Canopy 5.1% 
   Parking Lot 1.1% 

 

Table 3: Observed Route Characteristics of ODs 

Route Attributes Observed Routes of ODs Shortest Route of ODs 
Number of Trips (Routes) 298 
Average Distance (meters) 532 474 
Longest Distance (meters) 1,791 1,505 
Shortest Distance (meters) 80 80 

Average Percentage of Route (Distance-Based) across ODs 
Sidewalk 74.5% 69.7% 
Grass Surface 2.1% 2.1% 
Quadrangle 22.2% 23.7% 
Tree Canopy 17.8% 16.8% 
Parking Lot 1.6% 1.0% 

 

3.7 Recursive Logit Model Formulation 

In this section we present the formulation for the recursive logit (RL), a class of recursive models that has 
emerged in the recent route choice literature (Zhang et al. 2021). For a more detailed presentation, 
please see Fosgerau et al. (2013) and Zimmerman and Frejinger (2020). Previously, the majority of route 
choice modeling has been path (or route) based under a RUM framework, where the traveler chooses a 
route from a choice set of alternatives that maximizes his perceived utility; this requires specifying a 
route choice set, which is difficult depending on the network topology. The pedestrian network can be 
formulated as a directed connect graph 𝐺𝐺 =  (𝐴𝐴,𝑉𝑉), where 𝐴𝐴 is the set of links and 𝑉𝑉 is the set of nodes. 

In contrast to the path-based RUM framework, the recursive logit is formulated based on the framework 
of Markov Decision Process (MDP) used to solve stochastic shortest path problems in a dynamic 
programming context. In recursive models, network links correspond to states, while the outgoing links 
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from head node of the current link are available actions (Zimmerman and Frejinger, 2020).  We will 
denote states as k, actions as a, and the deterministic utility of an action pair is 𝑣𝑣(𝑎𝑎|𝑘𝑘), like previous 
studies (Fosgerau et al., 2013; Zimmerman and Frejinger, 2020; Zimmermann et al., 2017). The 
destination is represented by a dummy link d, which is an absorbing state of the MDP, where no 
additional utility is gained. A route under this framework is a sequence of states {𝑘𝑘0,𝑘𝑘1,𝑘𝑘2, …𝑘𝑘𝑇𝑇} 
starting from the origin link 𝑘𝑘0 and terminating at link 𝑘𝑘𝑇𝑇 = 𝑑𝑑. 

 

Figure 5. Illustration of Notation 

From the MDP perspective, Rust (1994) first describes the inverse problem of recovering the utility 
function as a parameter estimation problem. The noise in the observed route data is captured by a 
random error term 𝜀𝜀𝑎𝑎 added to the systematic utility 𝑣𝑣(𝑎𝑎|𝑘𝑘) resulting in: 𝑣𝑣(𝑎𝑎|𝑘𝑘) + 𝜇𝜇𝜀𝜀𝑎𝑎; 𝜇𝜇 is the scale 
parameter of the error term. The attributes in the model link-additive; the utility of a path is the 
summation of the link utilities of the path. Like the RUM framework, we assume the traveler chooses the 
route that maximizes their utility. From the perspective of the analyst, the traveler’s behavior is 
consistent with solving a stochastic shortest path problem. Within this context, the Bellman equation, 
from the dynamic programing class of problems, gives the optimal value function when state is link k and 
realizations 𝑒𝑒𝑎𝑎∈𝒜𝒜(𝑘𝑘) of 𝜀𝜀𝑎𝑎∈𝒜𝒜(𝑘𝑘) (Fosgerau et al., 2013; Zimmerman and Frejinger, 2020; Zimmermann et 
al., 2017): 

 

𝑉𝑉𝑑𝑑(𝑘𝑘, 𝑒𝑒𝑎𝑎) = �
0                                        , 𝑘𝑘 = 𝑑𝑑

max
𝑎𝑎∈𝒜𝒜(𝑘𝑘)

[𝑣𝑣(𝑎𝑎|𝑘𝑘) + 𝜇𝜇𝑒𝑒𝑎𝑎 + ∫𝑉𝑉𝑑𝑑(𝑎𝑎, 𝑒𝑒𝑎𝑎)𝑓𝑓(𝑑𝑑𝑒𝑒𝑎𝑎)] , ∀𝑘𝑘 ∈ 𝒜𝒜                                    (𝐸𝐸𝐸𝐸. 1)       

Eq. 1 can be simplified by taking the expectation with respect to 𝜀𝜀𝑎𝑎  and defining the expected value 
function as 𝑉𝑉𝑑𝑑(𝑘𝑘) = ∫𝑉𝑉𝑑𝑑(𝑎𝑎, 𝑒𝑒𝑎𝑎)𝑓𝑓(𝑑𝑑𝑒𝑒𝑎𝑎) of state k, which gives: 

 

𝑉𝑉𝑑𝑑(𝑘𝑘, 𝑒𝑒𝑎𝑎) = �
0                            , 𝑘𝑘 = 𝑑𝑑

max
𝑎𝑎∈𝒜𝒜(𝑘𝑘)

[𝑣𝑣(𝑎𝑎|𝑘𝑘) + 𝜇𝜇𝜀𝜀𝑎𝑎 + 𝑉𝑉𝑑𝑑(𝑎𝑎)] , ∀𝑘𝑘 ∈ 𝒜𝒜                                                             (𝐸𝐸𝐸𝐸. 2)                                                                               
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To be consistent with other studies (Fosgerau et al. 2013; Zimmerman and Frejinger, 2020; Zimmermann 
et al. 2017) we refer to Eq. 2 as the value function. The analyst does not observe the utility function. 
From the analyst’s perspective, the observe route choice behavior follows a probability distribution over 
a set of actions that maximize the expected utility (Eq. 2). Different assumptions on the error term 𝜀𝜀𝑎𝑎 
lead to different functional forms for the transition probabilities 𝑃𝑃𝑑𝑑(𝑎𝑎|𝑘𝑘). Given the assumption that 𝜀𝜀𝑎𝑎 
is distributed Extreme Type 1, the probability takes on the familiar logit form and the recursive model is a 
recursive logit (RL):                                                                            

 

𝑃𝑃𝑛𝑛𝑑𝑑(𝑎𝑎|𝑘𝑘;𝛽𝛽) =
𝑒𝑒𝑒𝑒𝑒𝑒 �1𝜇𝜇 �𝑣𝑣𝑛𝑛(𝑎𝑎|𝑘𝑘;𝛽𝛽) + 𝑉𝑉𝑛𝑛𝑑𝑑(𝑎𝑎|𝛽𝛽)��

∑ 𝑒𝑒𝑒𝑒𝑒𝑒 �1𝜇𝜇 �𝑣𝑣𝑛𝑛(𝑎𝑎′|𝑘𝑘;𝛽𝛽) + 𝑉𝑉𝑛𝑛𝑑𝑑(𝑎𝑎′|𝛽𝛽)��𝑎𝑎′∈𝐴𝐴(𝑘𝑘)

                                                        (𝐸𝐸𝐸𝐸. 3) 

 

where 𝛽𝛽 is the parameter for link attributes. Given observed routes, the model can be estimated by 
maximum likelihood. When applying the recursive logit, the choice of path is formulated as a sequence 
of link choices (Fosgerau et al. 2013; Zimmermann et al. 2017) and the choice probabilities for a route 
𝜎𝜎𝑛𝑛 = {𝑘𝑘0,𝑘𝑘1,𝑘𝑘2, … 𝑘𝑘𝑇𝑇}  are given by:                                                                                                                               

𝑃𝑃(𝜎𝜎𝑛𝑛|𝛽𝛽) = �𝑃𝑃𝑑𝑑�𝑘𝑘𝑗𝑗+1|𝑘𝑘𝑗𝑗;𝛽𝛽�
𝑇𝑇−1

𝑗𝑗=1

                                                                                                         (𝐸𝐸𝐸𝐸. 4) 

As a result, the likelihood function for a set of N path observations is:                                                                                                                                                     

ℒ(𝛽𝛽) = �𝑃𝑃(𝜎𝜎𝑛𝑛|𝛽𝛽)
𝑁𝑁

𝑛𝑛=1

                                                                                                                            (𝐸𝐸𝐸𝐸. 5) 

Link Size: In real-world networks, paths between a given origin and destination pair may share common 
links. This suggests that there exist unobserved correlations between path and the path utilities are 
correlated (Fosgerau et al. 2013). The path size logit formulation is a commonly used method to correct 
utility for overlapping paths. However, path size logit is not applicable in this recursive logit formulation; 
the recursive logit formulation requires link additive attributes, but the path size logit is not link additive. 
Fosgerau et al. (2013) proposed a link additive correction attribute called Link Size to correct utilities for 
overlapping links. The calculation of link size employs the anticipated link flow as an indicator of the 
degree of overlap. The anticipated link flow can be calculated by solving the following linear equation 
system: 

(𝑰𝑰 − 𝑷𝑷𝑇𝑇)𝑭𝑭 = 𝑮𝑮                                                                                                                            (𝐸𝐸𝐸𝐸. 6) 

where 𝑰𝑰 is the identity matrix, 𝑷𝑷 is the link choice probability matrix, 𝑮𝑮 is the demand between an origin 
and destination pair, and 𝑭𝑭 is the anticipated link flow.  
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CHAPTER 4. MODELING RESULTS 

In this section, we present estimation results from the recursive logit route choice model. The recursive 
logit model estimation was completed using the MATLAB script from Mai (2016). The trust region 
method with an initial trust region radius equal to 1.0 and BGFS algorithm were used in the optimization 
of log-likelihood function (log of Eq. 4). The stopping condition for the program was reached by 
maximum number of iterations or the tolerance of gradient. The maximum number of iterations was set 
to 1,500 and the gradient tolerance was set to 1 × 10−6 . The estimation results based on this data are 
presented in Table 4.  

The specification for Model 1 includes only distance, noise level, and link size, which accounts for path 
overlap. The coefficients for both distance and noise levels are negative, indicating that for a given OD 
pair, travelers on campus tend to choose routes with shorter distances and less noise, with a decibel of 
noise causing less disutility than a meter of distance. The specification for Model 2 includes all attributes. 
Link attributes that are qualitative, such as links traversing a tree canopy or that are paved sidewalk, 
were specified as a binary indicator (1/0) and interacted with both distance and noise level. The 
coefficient signs for both distance and noise remain negative with similar relative magnitudes, indicating 
similarity in tradeoffs from Model 1. Travel distance interacted with the parking lot binary indicator was 
statistically insignificant. Although we expect links that traverse a parking lot to statistically explain route 
choices, the estimation results from Model 2 indicate this is not the case. Similarly, noise interacted with 
the sidewalk and tree canopy were statistically insignificant at a 5% significance level. The interpretation 
is that each decibel of noise experienced on links traversing sidewalks and tree canopies do not 
statistically differ from each other. 
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Table 4: Route Choice Model Estimation Results

  Model 1 Model 2 Model 3 

Coefficient Value Std. Error t-statistic Value Std. Error t-statistic Value Std. Error t-statistic 

Travel Distance (100 meters) -4.852 0.389 -12.468 -6.040 0.674 -8.960 -5.768 0.562 -10.259 

Noise (10 db) -0.054 0.007 -8.058 -0.044 0.023 -1.888 -0.059 0.009 -6.710 
Link Size -0.411 0.054 -7.605 -0.406 0.065 -6.254 -0.408 0.064 -6.369 

Interaction Terms                   

Travel Distance - Sidewalk (1/0) --- --- --- 1.157 0.440 2.630 0.903 0.258 3.493 
Travel Distance - Non-Paved (1/0) --- --- --- 3.639 1.338 2.719 3.392 1.280 2.650 
Travel-Distance - Plaza/Quad (1/0) --- --- --- -0.794 0.311 -2.555 -0.779 0.312 -2.498 
Travel Distance - Tree Canopy (1/0) --- --- --- 0.461 0.223 2.063 0.298 0.129 2.312 
Travel Distance - Parking Lot (1/0) --- --- --- 1.471 1.759 0.836 --- --- --- 

Noise- Sidewalk (1/0) --- --- --- -0.014 0.022 -0.643 --- --- --- 
Noise - Grass (1/0) --- --- --- -0.153 0.090 -1.711 -0.138 0.085 -1.620 

Noise - Quadrangle (1/0) --- --- --- 0.036 0.011 3.318 0.035 0.011 3.241 
Noise - Tree Canopy (1/0) --- --- --- -0.010 0.011 -0.941 --- --- --- 
Noise - Parking Lot (1/0) --- --- --- 0.135 0.087 1.560 0.207 0.028 7.326 

Sample Size (Travelers) 16 16 16 

Sample Size (Routes) 298 298 298 

Sample Size (Links) 5,404 5,404 5,404 

LL(0) -4280.479 -4280.479 -4280.479 

LL(β) 5.704 5.622 5.621 
Run Time (min) 15 150 70 
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The specification for Model 3 only includes variables from Model 2 that were statistically significant. 
First, all the coefficients of variables retained were still statistically significant, retained their signs, and 
had similar magnitudes. Distance and noise continue to have negative coefficients, indicating a disutility 
for both, as each one increases in quantity. The positive signs for distance interacted with sidewalk, 
grass, and tree canopy indicate that, per distance, these infrastructure surfaces will improve a traveler’s 
utility relative to other attributes, but at different levels. Overall, grass leads to a higher utility per 
distance, relative to other attributes, followed by sidewalk and tree-canopy. Travelers prefer shorter and 
quitter routes, given a specific OD pair. Links that traverse grass tend to be more direct and shorter in 
distance on campus, compared to a sidewalk counterpart, which tend to be more rectilinear and less 
direct. Interestingly, the interaction term between distance and quadrangle is negative, indicating these 
links were avoided, relative to other link attributes. One possible explanation could be the noisy nature 
of quadrangles, as a gathering location for students. 

The negative signs for the interaction term between noise and grass surfaces indicate that while noise is 
negatively perceived, noise experienced while walking on grassy surfaces lead to even greater disutility. 
This is consistent with Travelers preferring shorter and quieter routes, given a specific OD pair. 
Interestingly, the interaction term between noise and quadrangle crossings has a positive sign, giving a 
net utility of -0.024 (-0.059 + 0.035), indicating the per decibel disutility from noise is reduced. This 
indicates an improvement in utility over other attributes. One explanation could be that noise is 
expected in a quadrangle setting. The interaction term between noise and parking lot also has a positive 
sign and large magnitude, giving a positive net utility of 0.15, which suggests that noise has a positive 
impact in parking lot areas. Similar to the interaction variable of noise with traversing a quadrangle, the 
positive impact could be because parking lots are inherently noisier environments, and the noise 
expectation might be more tolerable.  

Figure 7 shows the marginal disutility per unit of distance for all the attributes from Model 3. The 
presence of sidewalk, grass surface, tree canopy coverage can compensate for the disutility created by 
distance on its own. Thus, while pedestrians experience a disutility for longer routes, this can be offset 
by making the surface paved as a sidewalk, providing a grassy surface or more shade from tree canopy 
coverage. Only the quadrangle attribute resulted in a greater net disutility with respect to distance; this 
is possibly because traversing a quadrangle leads to longer sun exposure and more crowds. Based on the 
marginal disutility in Figure 7, the design of walking paths benefits from grass surfaces, followed by 
sidewalks and tree canopy, in terms of infrastructure. While investments in all three types would offset 
the base disutility from distance, having grassy surfaces appears to yield the most benefit in terms of 
increasing the likelihood of a walking path being used.  
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Figure 6. Marginal Disutility (per 100 meters) 
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CHAPTER 5. APPLICATION AT SKYLINE STATIONS 

In this section, we present the constructed pedestrian network at each identified Skyline station and the 
application of calibrated recursive logit model to analyze pedestrian flow distribution on the pedestrian 
network. The developed pedestrian network construction framework and discrete choice model were 
applied to the four selected Skyline Stations, Waiawa Pearl Highlands Station, Pouhala Waipahu Transit 
Center Station, Kualaka'i East Kapolei Station, and Keone'ae U.H. West Oahu Station, as shown in Figure 
7.  

 

Figure 7. Location of Selected Skyline Station in Honolulu 

The network contains links and nodes. Each link represents a walkable way, this can be sidewalks, 
crosswalks, pedestrian pathways, pedestrian cross bridges, etc. Each node represents an end point of a 
link, this could be intersection of links or a terminal node of a link. For major streets, such as arterial 
roads and collector roads, specific links were constructed for sidewalks on both sides of the street to 
explicitly account for the pedestrian traffic on both sides of the street. For areas like university 
campuses, the pedestrian network also includes pedestrian pathways through yards and quadrangles. 

An individual pedestrian network was developed for each station. The pedestrian network was designed 
to cover areas around the station within walking distance. The network will cover the common 
destinations near the Skyline station, such as shopping centers, residential communities, education 
facilities, post office, recreational facilities, etc. The network was initially acquired from OpenStreetMap. 
Then, the network was updated by using Google satellite image to include all currently available 
pedestrian facilities, such as sidewalks, crosswalks, and cross bridges. The pedestrian networks for each 
of the four stations are demonstrated in Figure 7, Figure 8, Figure 9, and Figure 10. The network 
attributes for identified Skyline station are summarized in Table 5.  
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Table 5: Network Characteristics at Skyline Stations 

Waiawa Pearl Highlands Station 
Network Attributes Percentage of Network Distance by Attribute 
Number of Links 124 Paved Sidewalk 81.0% 
Number of Nodes 100 Grassy Surface 0.4% 
Total Distance (meters) 10,121 Quadrangle 0% 
  Tree Canopy 4.2% 
   Parking Lot 3.7% 

 

Pouhala Waipahu Transit Center Station 
Network Attributes Percentage of Network Distance by Attribute 
Number of Links 253 Paved Sidewalk 49.4% 
Number of Nodes 210 Grassy Surface 0% 
Total Distance (meters) 13,900 Quadrangle 0% 
  Tree Canopy 0% 
   Parking Lot 16.4% 

 

Kualaka'i East Kapolei Station 
Network Attributes Percentage of Network Distance by Attribute 
Number of Links 152 Paved Sidewalk 90.6% 
Number of Nodes 117 Grassy Surface 0% 
Total Distance (meters) 8,357 Quadrangle 9.1% 
  Tree Canopy 0% 
   Parking Lot 1.0% 

 

Keone'ae U.H. West Oahu Station 
Network Attributes Percentage of Network Distance by Attribute 
Number of Links 215 Paved Sidewalk 83.0% 
Number of Nodes 156 Grassy Surface 0% 
Total Distance (meters) 12,703 Quadrangle 9.2% 
  Tree Canopy 3.4% 
   Parking Lot 2.9% 
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Figure 8. Pedestrian Network for Waiawa Pearl Highlands Station 

 

Figure 9. Pedestrian Network for Pouhala Waipahu Transit Center Station 
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Figure 10. Pedestrian Network for Kualaka'i East Kapolei Station 

 

Figure 11. Pedestrian Network for Keone'ae U.H. West Oahu Station
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10 OD pairs were selected for each station for pedestrian flow distribution analysis. The main goal is to 
analyze the pedestrian flow leaving or entering the station. The destination for all OD pairs will always be 
the Skyline station. Popular points of interests on the network were selected as the origins, such as 
supermarkets, shopping centers, business plazas, residential communities, educational facilities, etc. 
Detailed information for each selected OD pairs is presented in Table 6.  

Table 6: Description of Selected OD Pairs 

Waiawa Pearl Highlands Station 

Origin Destination 

Walmart on Kuala St Waiawa Pearl Highlands Station 

Century Park Plaza Waiawa Pearl Highlands Station 

Acacia Rd. and Kipaipai St Waiawa Pearl Highlands Station 

Longs Drugs on Kuala St Waiawa Pearl Highlands Station 

Restaurants Near Sam’s Club Gas Station Waiawa Pearl Highlands Station 

USPS Office on Kamehameha Hwy Waiawa Pearl Highlands Station 

The Home Depot on Kamehameha Hwy Waiawa Pearl Highlands Station 

Pearl City Shopping Center Waiawa Pearl Highlands Station 

Sam’s Club Waiawa Pearl Highlands Station 

Stuart Plaza Waiawa Pearl Highlands Station 

Pouhala Waipahu Transit Center Station 

Origin Destination 

Times Supermarket – Waipahu Pouhala Waipahu Transit Center Station 

Waipahu St and Waipahu Depot St Pouhala Waipahu Transit Center Station 

Waipahu Public Library Pouhala Waipahu Transit Center Station 

Farrington Hwy + Opp Mokuola St Shops Pouhala Waipahu Transit Center Station 

Waipahu St and Mokuola St Pouhala Waipahu Transit Center Station 

Waipahu United Church of Christ Pouhala Waipahu Transit Center Station 
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Pahu St. Pouhala Waipahu Transit Center Station 

Waipahu Festival Marketplace Pouhala Waipahu Transit Center Station 

Puamano Place and Kahiki Place Pouhala Waipahu Transit Center Station 

Awalau St and Mokuahi St Pouhala Waipahu Transit Center Station 

Kualaka'i East Kapolei Station 

Origin Destination 

The Salvation Army Kroc Center Hawaii Kualaka'i East Kapolei Station 

Kaneoneo St Kualaka'i East Kapolei Station 

Residentials on South Keahumoa Pkwy Kualaka'i East Kapolei Station 

Kapolei Elementary School Kualaka'i East Kapolei Station 

'Elepu'u St and Kumuhonua St Kualaka'i East Kapolei Station 

Building F Honouliuli Middle School Kualaka'i East Kapolei Station 

Football Field Honouliuli Middle School Kualaka'i East Kapolei Station 

Kualakai Pkwy station north Kualaka’I East Kapolei Station 

Keahumoa Pkwy and Maweke St Kualaka'i East Kapolei Station 

Maunakapu St and Maweke St Kualaka'i East Kapolei Station 

Keone'ae U.H. West Oahu Station 

Origin Destination 

U.H. West Oahu Administration Building Keone'AE U.H. West Oahu Station 

U.H. West Oahu Library Keone'AE U.H. West Oahu Station 

Hawaii Tokai International College Keone'AE U.H. West Oahu Station 

U.H. West Oahu Recreation Center Keone'AE U.H. West Oahu Station 

Nana Hope St Residentials Keone'AE U.H. West Oahu Station 

Nana Hope St and ‘Ōnohi‘ula St Residentials Keone'AE U.H. West Oahu Station 

Ho'omohala Ave and Kauluakoko St Keone'AE U.H. West Oahu Station 
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Kauluakoko St and ‘Ōnohi‘ula St Keone'AE U.H. West Oahu Station 

Ho‘okulāia St and Kauluakoko St Keone'AE U.H. West Oahu Station 

Kulanihakoi St and Kauluakoko St Keone'AE U.H. West Oahu Station 

 

To analyze the flow distribution across the network for selected OD pairs, a pedestrian travel demand 
needs to be assigned to each OD pair. Filed surveys focusing on pedestrian traffic were conducted at 
selected Skyline stations. However, the Skyline Rail is still at its early operation stage, the current 
ridership might not be sufficient to reflect the actual pedestrian trips from and to the station. The results 
from the field surveys are not sufficient to determine the pedestrian travel demands associated with 
Skyline stations. Hence, we assumed 100 pedestrian trips per day for each OD pair. 

At each selected Skyline station, the calibrated recursive logit model was applied to determine the flow 
distribution for each specific OD pair. We used the coefficients from Model 3, which is model with only 
statistically significant coefficients. For each OD pair, the RL model will calculate and distribute flows to 
each link in the network. The flow distribution was calculated for each of the 10 OD pairs, then the flow 
on each link was added at link level to calculate the total flow on each link. This process was repeated at 
all selected stations. At the end of this stage, the total pedestrian flow distribution at each link for all 4 
networks was determined. Visualizations for total pedestrian flow distribution on the constructed 
network at each station are demonstrated in Figure 11 (a), Figure 12 (a), Figure 13 (a), and Figure 14 (a). 
Figure 11 (b), Figure 12 (b), Figure 13 (b), and Figure 14 (b) present a zoom in visualization just focusing 
on the areas next to the stations, the numbers shown in these figures are the pedestrian flow numbers 
on each link. 
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Figure 12 (a). Pedestrian Flow Distribution at Waiawa Pearl Highlands Station 

 

Figure 12 (b).  Pedestrian Flow Distribution at Waiawa Pearl Highlands Station (Zoom in to Station Area) 
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Figure 13 (a). Pedestrian Flow Distribution at Pouhala Waipahu Transit Center Station 

Figure 13 (b). Pedestrian Flow Distribution at Pouhala Waipahu Transit Center Station (Zoom in to Station 
Area) 

Flow 
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Pouhala Waipahu Transit Center Station 
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Figure 14 (a). Pedestrian Flow Distribution at Kualaka'i East Kapolei Station 

 

Figure 14 (b). Pedestrian Flow Distribution at Pouhala Waipahu Transit Center Station (Zoom in to Station 
Area) 

Flow 
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Kualaka'i East Kapolei Station 
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Figure 15 (a). Pedestrian Flow Distribution at Keone'ae U.H. West Oahu Station 

 

Figure 15 (b). Pedestrian Flow Distribution at Keone'ae U.H. West Oahu Station (Zoom in to Station Area)
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At Waiawa Pearl Highlands Station, most of the pedestrian traffic will come from the north side of the 
Kamehameha Highway, where the residential buildings and shopping centers are located. Pedestrians 
coming from the north of the Kamehameha Highway need to cross the Kamehameha Highway to access 
the Waiawa Pearl Highway Station. Pedestrians coming from the shops or communities on the south side 
of Kamehameha Highway, such as The Home Depot, will most likely cross the Kamehameha Highway first 
and walk along the sidewalk on west bound side of the Kamehameha Highway. This is because the 
Farrington Highway intersects Kamehameha Highway from the south, the intersection leaves the east 
bound side of Kamehameha Highway with no continuous sidewalk. Hence, most of the pedestrian traffic 
accessing the Skyline station need to cross Kamehameha Highway and the intersection of Kamehameha 
Highway and Kuala Street. Based on the simulation results, about 80% of the pedestrian traffic will cross 
on the east side of the Kamehameha Highway and Kuala Street intersection.  

The Pouhala Waipahu Transit Center Station is surrounded by residential communities, commercial 
facilities, and shopping plazas. All these locations might generate pedestrian trips to the Skyline station. 
Pedestrian crossing bridges have been constructed at both sides of the Farrington Highway. All 
pedestrian traffic accessing the station will need to use the pedestrian crossing bridge from either side of 
the Farrington Highway. For pedestrians accessing the station from the east, if they are walking on the 
north side of the Farrington Highway, they may walk on the sidewalk on Moloalo Steet, and cross 
Mokuola Street. However, the intersection of Moloalo Street and Mokuola Street does not have a 
crosswalk marking, which might induce safety concerns.  

The Kualaka'i East Kapolei Station is in a rural and suburban area. Pedestrian traffic accessing this station 
might come from the residential community on the southeast, and communities and education facilities 
along the Keahumoa Pkwy. The station is only accessible at the intersection of Kualakai Pkwy and 
Keahumoa Pkwy. Pedestrian traffic from the community on the southeast side of the station will walk 
along Kualakai Pkwy and cross the Kualakai Pkwy in front of the station. Pedestrian traffic coming from 
Honouliuli Middle School and nearby communities will merge at Keahumoa Pkwy before arriving at the 
station.  

The Keone'ae U.H. West Oahu Station is at the intersection of Kualakai Pkwy and Ho’omohala Ave. At this 
Station, pedestrian traffic will come from the UH West Oahu on the west, and the residential 
communities on the east. A park and ride option is available at this station, pedestrian traffic is expected 
from the park and ride parking lot. Pedestrian traffic from the UH West Oahu campus will access the 
station via Ho’omohala Ave. A pedestrian crossing bridge is constructed from the northwest corner of 
the intersection to the station. All pedestrians will need to use this crossing bridge to access the station. 
It appears that there is no station entrance on the east side of the Kualakai Pkwy. On the other hand, at 
the intersection, crosswalk is only available on the south side of Ho’omohala Ave, while the station is on 
the north side of Ho’omohala Ave. This means pedestrian traffic from Ho’omohala Ave will need to cross 
the Kualakai Pkwy and Ho’omohala Ave at grade level to access the station. Kualakai Pkwy is a multilane 
busy highway, which may cause safety risks for pedestrians even with crosswalks.  
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CHAPTER 6. CONCLUSIONS 

To analyze the pedestrian flow distribution near the identified Skyline stations. We first conducted a 
study on pedestrian route choice behavior at the University of Hawaii at Manoa campus. In this study, 
we estimate a recursive logit model based on observed route choices from volunteers on a university 
campus who logged GPS points for two weeks. The recursive logit model is a link-based model, which 
formulates the route choice problem as link choice problem at each node. The estimation results 
indicate that sidewalks, grass surfaces, and a tree canopy are preferred over links that traverse 
quadrangles. Pedestrians have a higher likelihood of choosing a route with more sidewalks, grass surface 
and less sun exposure. With respect to noise, traversing quadrangles and parking lots is preferable than 
sidewalks, grass surface, and tree canopy. 

An individual pedestrian network was constructed for each identified Skyline station to cover the point 
of interests in walking distance. Ten OD pairs were selected for pedestrian flow distribution analysis at 
each station. We applied our final model specification (Model 3) to calculate the pedestrian flow 
distribution on the network. Pedestrian traffic needs to cross major highways to access the station at 
Waiawa Pearl Highlands Station, Kualaka'i East Kapolei Station, and Keone’ae U.H. West Oahu Station. As 
the Skyline ridership increases in the future, this might become a higher risk to pedestrian safety.  
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