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EXECUTIVE SUMMARY 

In this project, the research team investigated the feasibility of LiDAR data for extracting infrastructure 
geometries and other human scale features relevant for pedestrian safety from LiDAR data collected 
annually for roads managed and maintained by the Hawaii State Department of Transportation (HDOT), 
and their potential for informing policies that provide safe accommodations for all travelers. LiDAR data 
has been widely used in transportation for mapping, object detection, and capturing highly accurate and 
detailed data. Our research initially focused on road markings since they serve as fundamental visual 
cues on roads and highways, providing crucial information, guidance, and regulation for drivers, 
pedestrians, and cyclists. The current absence of an automated method for recognition of road markings 
has resulted in time-consuming and labor-intensive processes as well as inaccurate and error-prone 
results. Developing automated methods for extraction, detection, and localization of road markings can 
overcome these challenges and enable more efficient, accurate, and up-to-date road marking 
maintenance management, benefiting both road users and transportation authorities. This investigation 
into road markings lays the groundwork for future explorations, utilizing LiDAR data to uncover a 
broader range of signs and signals embedded within the transportation landscape. 

The Hawaii State Department of Transportation (HDOT) has periodically collected photologs of their 
roadways since 2003, and in 2009 began also collecting LiDAR for the island of Oahu, with the islands of 
Hawaii (the Big Island), and Maui/Kauai following in 2011 and 2012 respectively. Given the long-term 
objective of this study to develop a framework and approach for automating the detection of 
infrastructure elements based on deep learning approaches, a YOLOv5 (You Only Look Once version 5) 
image object detection model was trained with the HDOT point cloud data. Our model was able to 
accurately detect 85% of road-markings in the dataset, with results closer to 92% for crosswalks. These 
results show that the automatic detection and geocoding of relevant roadway assets may be possible 
through the analysis of LiDAR point cloud data using the framework and methods utilized in this study.  

Utilizing LiDAR point cloud data for detection of road markings also has certain advantages compared to 
satellite imagery. Examples of these advantages include detection of markings that would otherwise be 
blocked by other road facilities and natural obstructions such as trees. Other advantages of this 
framework include the elimination of the need for inspections and related work zone safety issues, and 
permitting quicker detection and response to changing road conditions. 

Finally, a Poisson Regression Analysis was performed on the City and County of Honolulu crash counts to 
analyze safety across Census tracts, and to determine the relationship between detection and 
confidence of detection (as a measure of quality) of roadway markings and pedestrian and bike crash 
incidents. The model shows that Census tracts with a greater detection of crosswalks showed higher 
crash rates, and tracts with a higher mean confidence scores (related to marking quality) showed lower 
crash rates. Similar to results for pedestrian crashes, the model shows that tracts with a greater 
detection of bike symbols showed high crash rates, and tracts with detected symbols that have a higher 
mean confidence (greater marking quality) showed lower crash rates. Furthermore, it can be concluded 
that higher population density tracts are associated with lower crash rates, and higher roadway length 
to tract area ratios are associated with higher crash rates, though this was statistically insignificant for 
bike crashes. For pedestrian crashes, tract areas with higher areas of Hawaiian Homelands per tract area 
show lower pedestrian crash rates, but this was not too statistically significant.
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CHAPTER 1. INTRODUCTION 

LiDAR (short for Light Detection and Ranging) point cloud sensors, are found in a wide range of 
technologies, including airplanes, autonomous vehicles, and consumer smartphones. LiDAR sensors 
operate by emitting pulsed light waves into the surrounding environment. When the light pulses bounce 
back to the sensor, the sensor tracks the time it took for each pulse to return to the sensor, and the 
angle of pulses received to calculate the 3-dimentional (3D) coordinates for each LiDAR point. Repeating 
this process millions of times produces a point cloud, which is a cluster of points in 3D space. Each point 
in the point cloud contains multiple pieces of information including spatial coordinates, intensity values, 
RGB values, and bounce angles.  

LiDAR is widely used in transportation for mapping, object detection, and capturing highly accurate and 
detailed data. Within the wide array of transportation data captured by LiDAR point clouds, our research 
initially focused on road markings. Road markings serve as fundamental visual cues on roads and 
highways, providing crucial information, guidance, and regulation for drivers, pedestrians, and cyclists. 
This investigation into road markings lays the groundwork for future explorations, utilizing LiDAR data to 
uncover a broader range of signs and signals embedded within the transportation landscape. 

Using the information attributed to the points and their spatial geometries as inputs, it is possible to 
detect objects in point clouds through deep learning approaches. Compared to 2D photo images, point 
clouds have multiple advantages. Accurately extracting information regarding an object’s actual 
dimensions is difficult because 2D images lack depth information. Each point of a point cloud is 
geocoded and contains 3D information, creating a potential for inferring objects’ geometries and the 
spatial relationships between objects. Furthermore, LiDAR does not require external light to collect data 
like conventional cameras (1). LiDAR is less affected by variations in lighting conditions compared to 
images and videos. LiDAR operates based on physical properties like geometry and reflectivity, rather 
than relying on visual appearance like images and videos. LiDAR point cloud data allows for efficient 
filtering and removal of other objects present in the scene, such as vehicles or pedestrians. This 
capability reduces false detections caused by objects that may resemble road markings in images or 
videos. LiDAR point cloud overcomes visual barriers caused by objects like vegetation and overpasses. 
This capability provides unobstructed access to the road surface and enhances the reliability and 
completeness of road marking analysis. 

Mobile LiDAR Systems (MLS) are used widely to gather infrastructure information, where the LiDAR 
sensor is mounted on the roof of a vehicle and collects data as the vehicle is moving. One advantage of 
MLS is the ability to collect data while moving in traffic, minimizing the disruption to traffic and 
shortening collection times. The information collected has supported analyzing road markings, 
pavement condition, road edge information, traffic signs, traffic lights, etc. since the sensor covers a 
360-degree range. The benefits from MLS have resulted in several State DOTs initiating efforts to collect 
point clouds of their roadways, including Oregon Department of Transportation and Massachusetts 
Department of Transportation (1). The Hawaii State Department of Transportation (HDOT) has collected 
photologs of their roadways since 2003, and in 2009 began also collecting LiDAR for the island of Oahu, 
with the islands of Hawaii (the Big Island), and Maui/Kauai following in 2011 and 2012 respectively (2). 
Alongside this data collection effort, the City and County of Honolulu and other parts of the state have 
begun embracing the Complete Streets Design perspectives, which promotes more use of non-
motorized and public transit travel modes (3). These developments underscore the importance of point 
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cloud information for supporting asset management, specifically for non-motorized travel modes. As 
LiDAR point clouds continues to increase in frequency and volume, an opportunity exists for extracting 
information from them that is pertinent to the Complete Streets Design efforts. 

The absence of an automated method for recognition of road markings results in time-consuming and 
labor-intensive processes as well as inaccurate and error-prone results. Road markings are subject to 
damage and wear due to factors like traffic load and weather conditions. To maintain effective road 
marking visibility and functionality, regular maintenance and timely reapplication of markings are 
necessary. In the absence of an automated method, updating and reflecting these changes in a timely 
manner proves challenging. Developing automated methods for extraction, detection, and localization 
of road markings can overcome these challenges and enable more efficient, accurate, and up-to-date 
road marking maintenance management, benefiting both road users and transportation authorities. 

In this study, we focus on automating road marking extraction from the HDOT MLS point cloud 
database, managed by Mandli. Mandli is a company specializing in highway data collection, including 
LiDAR. Mandli has cooperated with various Departments of Transportation throughout the United States 
(4). Here, we focus on infrastructure elements related to non-motorized travel modes, supporting the 
ongoing Complete Streets efforts in Hawaii. Figure 1 presents an example of point clouds for a street in 
Honolulu. Different colors represent differences in elevation and intensity values. Based on a visual 
inspection, road markings can be observed within these point clouds. The long-term objective of this 
study is to develop a framework and approach for automating the detection of these infrastructure 
elements, based on deep learning approaches. For this project, a YOLOv5 (You Only Look Once version 
5) image object detection model was trained with the HDOT point cloud data. YOLO is a family of deep 
learning models designed for fast object detection; the latest published version is the 5th version (5). 
The focus here is on non-motorized objects, such as crosswalks, bike lanes and bike boxes. The same 
approach can be extended to other markings as well, which we plan for subsequent studies. 

 

Figure 1. Example of LiDAR point clouds in Honolulu (Isenberg Street and King Street intersection) 

 Finally, a Poisson Regression Analysis was performed on the City and County of Honolulu crash 
counts to analyze safety across Census tracts, to determine the relationship between detection and 
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confidence of detection (as a measure of quality) of roadway markings and pedestrian and bike crash 
incidents, as discussed in Chapter 4.
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CHAPTER 2. REVIEW OF LITERATURE 

Road markings play a crucial role in high-precision maps, which are increasingly employed to manage 
and regulate traffic activities in intelligent transportation, travel behavior, and autonomous vehicles (6, 
7). It is vital to consider the influence of crosswalks and pedestrians' behavior when analyzing pedestrian 
crash records since these locations serve as points of interaction between pedestrians and vehicles. 
Previous studies have shown that approximately 90 percent of pedestrian-vehicle collisions occurred 
within 70 feet of a crosswalk (8). Detecting the precise locations of crosswalks is therefore highly 
beneficial in identifying and preventing such incidents in the future, particularly with the rise of 
autonomous vehicles. Studies on crosswalk detection and analysis from images emerged in the late 20th 
century. The first investigation into road surface analysis was conducted by Pomerleau (9) using the 
Artificial Neural Network-based Autonomous Land Vehicle (ALVINN) in 1989. Kitawaki et al. (10) 
attempted to estimate the length of crosswalks by converting real images to grayscale to assist visually 
impaired individuals in crossing independently. Se et al. (11) employed simple computer vision 
techniques such as the Hough transform and Canny edge detector to detect crosswalks in images.  

The advent of Deep Learning (12) and Convolutional Neural Networks (CNNs) revolutionized object 
detection in images. Deep learning methods have been utilized for detecting objects, pedestrians, and 
traffic signs on highways (13, 14, 15). Malbog (16) employed Mask R-CNN, which utilizes ResNet as its 
backbone network, to detect crosswalks from dash camera images and internet videos, achieving an 
accuracy of 97% for the model. The introduction of You Only Look Once (YOLO), a unified and real-time 
object detection algorithm, has further transformed the field, constantly improving speed and precision 
(17, 18, 19). YOLO has gained popularity in the object detection community, as demonstrated by Zhang 
et al. (20), who developed a Convolutional Neural Network based on YOLOv5 called CDNet. This network 
achieved an F1 score above 94% in detecting crosswalks from real-time images. It is important to note 
that factors such as weather and illumination can significantly impact crosswalk detection from images. 
Moreover, a lack of image preprocessing leads to inconsistent results, affecting object classification and 
detection (21). In this regard, the use of Laser Imaging Detection and Ranging (LiDAR) proves 
advantageous, as road markings can be detected using LiDAR point clouds even without external 
illumination. Hata et al. utilized LiDAR reflective intensity data to detect road markings (22), and other 
studies have employed LiDAR systems to determine intersections on roads (23, 24, 25). Previous studies 
have projected (3D) point clouds onto 2D images to detect crosswalks from images, but the question of 
crosswalk geolocation remains unanswered. This study aims to address both crosswalk detection and 
geolocation. 

In past studies, (3D) point clouds are first projected onto 2D images. Taking advantage of reflectivity 
difference between asphalt and road markings, a segmentation is performed to segment road markings 
from other objects in the point cloud. A pavement segmentation is sometimes used prior to 
segmentation to eliminate all the points above the ground and greatly reduce the computational 
resource required. Soilan et al. (26) propose a method based on the construction of a saliency map for 
pavement segmentation of point clouds. The point clouds are first partitioned into sections with equal 
length, in the direction of MLS vehicle’s trajectory. Second, the dominant normal vector of cloud is 
computed using K-means clustering. Finally, the distance between each normal vector and the dominant 
normal vector is projected into a hyperbolic tangent function apace, making the difference between a 
salient and non-salient point is large or salient enough for classification. Yao et al. (27) propose a 
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method based on the distance between scan lines for pavement segmentation and develop thresholds 
and conditions for distance leap between adjacent points to extract scanlines. Finally, the geometric 
features, such as elevation and slope, are calculated for each scanline to extract road surface. Chen et al. 
(28) convert point clouds into intensity images by using inverse distance weighted (IDW) interpolation to 
determine the intensity value for each grid. Wen et al. (29) and Jung et al. (1) projected 3D point clouds 
onto gridded 2D image; the average density of each cell was used as the density value.  

For road marking segmentation, past studies have used the intensity value as the main attribute. Soilan 
et al. (26) propose that the intensity distribution of roads with markings can be further distributed into 
two classes that approximate Gaussian distributions. The segmentation follows from properly classifying 
the points, and then applying a Gaussian Mixture Model with two clusters to filter the point clouds. The 
same authors use a normalized sum of intensities as the feature for creating the intensity-based image. 
Finally, an adaptive thresholding approach was used to improve the masking performance. Yao et al. 
(27) took a similar direction to Soilan et al. (26), which included point cloud rasterization, binary 
segmentation, and a noise filtering process. Yao et al. (27) use IDW interpolation to generate intensity 
image, then marking segmentation was performed by using adaptive threshold that based on an integral 
image. Wen et al. (29) and Chen et al. (28) took different approaches to perform extraction; they utilized 
machine learning based methods to extract features automatically. Wen et al. (29) constructed a 
modified U-net to perform road marking classification at the pixel level. Images with different intensity 
were used in training to solve the intensity variation problem. U-net is a convolutional neural network 
(CNN) originally developed for biomedical image segmentation; it is widely used as a semantic 
segmentation method now. Chen et al. (28) proposed a dense feature pyramid network-based deep 
learning model for road marking segmentation. A U-net network was adopted for feature extraction and 
feature pyramid networks were established with a residual neural network (ResNet). ResNet is a type of 
neural network widely used in computer vision that allows for training for extremely deep neural 
networks (30). Next, a region proposal network was established for calculating candidate regions; these 
region proposals were mapped into feature pyramid networks to generate regions of interests. They 
were used in a ROI predictor network to complete the detection and segmentation. The next step 
generates semantic information for marking segmentation.  

Soilan et al. (26) propose a machine learning algorithm with geometry-based features to perform 
semantic classification on road markings; the neural network would first classify markings into three 
generic classes. Then the geometric features in each class were used to assign a proper semantic 
meaning to the road markings. Yao et al. (27) and Wen et al. (29) used geometric features for semantic 
classification of larger road makings mostly lane lines and crosswalks. The geometric features were 
collected through Euclidean distance clustering and minimum bounding rectangle. Yao et al. (27) used a 
template matching method for arrow markings; the skeleton of arrow markings was extracted and 
matched with road marking design standards. Wen et al. (29) trained a convolutional neural network 
classifier for identifying road markings other than lane lines and crosswalks. 
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CHAPTER 3. DATA AND METHODS 

3.1. Stage 1: Pilot Study 

In the first stage of this project, we investigated the feasibility of a framework and approach for 
extracting road marking information from LiDAR point clouds collected by MLS systems used by the 
Hawaii State DOT, on a subset of targeted streets in Honolulu. In this framework, the LiDAR point cloud 
was projected onto a 2D intensity image.  A deep learning-based object detection model was trained 
and applied to detect road markings, given this 2D intensity image. A model from this approach 
achieved a 0.85 average precision at an Intersection over Union (IoU) threshold equal to 0.50. 

Based on the review of approaches for extracting markings from point clouds of roadways, we proposed 
the following framework and approach. 

 

Figure 2. Flowchart for the Workflow 

 

While some parts overlap with previous studies, our approach is convenient and is intended for 
engineering at HDOT. Figure 2 presents the workflow of our approach. The approach can be completed 
primarily by using ArcGIS, which is widely available. This approach provides another option for engineers 
without proficient knowledge in computer vision technology and implementation.  
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3.1.1. Data Acquiring and Preprocessing  

Before any analysis can be performed on the point clouds, these data need to be extracted from the 
database of LiDAR data collected. This section discusses the data acquisition process. The point cloud 
data for the targeted streets in Honolulu were downloaded. The data only has 4 attributes; they are the 
x-y-z coordinates and the intensity values. Intensity is the main attribute used for road marking 
detection in this study. Crosswalk markings and bike sharrows are the two types of road markings 
considered in this study. To acquire enough samples, point clouds for ten roads were selected for 
downloading; nine of them were for training and one was kept for validation. These ten roads were 
selected based on the discussions with HDOT and the City and County of Honolulu (CCH) Department of 
Transportation Services (DTS). All of these are major arterials in Honolulu with a broad combination of 
traffic markings. The roads selected are listed in Table 1  and shown in Figure 3. 

Table 1. Training and validation road selection 

Street Name Purpose Street Name Purpose 
Dole Street Training University Avenue Training 

Metcalf Street Training Wilder Avenue Training 
Beretania Street  Training King Street Training 

Ala Wai Blvd Training Kuhio Avenue Training 
Kalakaua Avenue  Training Kapahulu Avenue Validation 

 

 

Figure 3. Map of selected roads for training and validation 
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Dole Street, University Avenue and Metcalf Street are the roads around the University of Hawaii at 
Manoa. University Avenue is one of the major roads that provides access to Manoa valley. Metcalf 
Street and Wilder Avenue are the major roads north of the H1 Interstate. The traffic exiting H1 use these 
streets to access local areas, and are thus, extremely high volume. Beretania Street and King Street are 
the two major east-west streets for Honolulu. Ala Wai Boulevard, Kalakaua Avenue and Kuhio Avenue 
are three major roads in Waikiki, which is most popular destination for tourists in Honolulu. Kapahulu 
Avenue is a major road that starts in Waikiki and travels north with a heavy concentration of businesses 
along its side. The roads selected are all major high-volume roads and have many intersections.  

3.1.2. Obtaining Samples and Drawing Bounding Boxes 

Based on the objects of interest to this study, there are two approaches for extracting point clouds. The 
first approach considers intersections. Most of the intersections will have at least one crosswalk 
markings. We draw a single bounding box for one intersection. The boundary of this box extends beyond 
the edge of the crosswalk markings for at least the width of the crosswalk markings in all directions. In 
some cases, there will be bike sharrows that are close to the crosswalks, which are included within the 
bounding box. The second approach considers the middle of roads, away from intersections. Bike 
sharrows and midblock crosswalks are typically present. In this case, we draw a bounding box to enclose 
that single object. If there is another target object nearby, the bounding box should be including both 
objects.  

Before training the deep learning model, data preprocessing and labeling were conducted on the 
downloaded data. The data labeling and preprocessing process are all completed with ArcGIS Pro. The 
data preprocessing procedure is presented as the following: 

1. The points above the ground were all removed using the ArcGIS ground identification tool. 
2. The remaining ground points were projected onto horizontal plane and then rasterized with a 

resolution based on the averaging point spacing.  
3. The average intensity value for points projected onto each pixel was assigned a gray value. In 

this study, 0.04m was used as resolution and the natural neighbor interpolation method was 
used to fill voids. 

4. The road markings were labeled on the intensity images within ArcGIS.  
5. The labeled intensity images were exported to uni-sized images to use as the input data for 

model training.  

There are 237 crosswalk markings and 86 bike sharrows labeled in training set; 48 crosswalk markings 
and 31 bike sharrows labeled in the validation set. Figure 3 shows the visualization of intensity image 
and point cloud. Figure 4 shows the samples of exported training images with bounding boxes and class 
labels.  
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Figure 4. The intensity image and point cloud at the same location. (a) intensity image (b) point cloud. 

 

 

 

Figure 5. Exported fixed size training image samples 

 

3.1.3. Training Deep Learning Model  

We trained a YOLOv5m (You Only Look Once version 5 median size model) model for road marking 
detection and classification. YOLO is an algorithm that uses neural networks to provide read-time object 
detection. Detection and classification are two different tasks. In detection the model is trained to 
detect the possible location and size of the object on image; in classification the model is trained to 
recognize the type of objects only in the detected region from detection task. The model was trained on 
a desktop with a 6th generation i7 CPU with 16 GB memory. The model was trained for 90 epochs, each 

(a) 
(b) 
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epoch takes about 30 minutes. One epoch is when the training process has gone through all the samples 
completely. 

3.1.4. Findings and Results 

This section presents the findings and results of the pilot study. The metrics considered for training the 
model include: (i) training loss; (ii) validation loss; (iii) recall; (iv) precision; and and (v) mAP. The loss 
function is composed by 3 parts: box loss, objectness loss, and classification loss. The box loss is loss for 
bounding box regression. The objectness loss is the confidence of an object presence in the anchor, 
when a bounding box is predicted, there is a confidence score based on whether object is actually 
presented in the predicted bounding box, the objectness loss is based on this. The classification loss is 
the loss for object classification (5). A metric commonly used for object detection is intersection over 
union (IoU). In object detection, there is a ground truth bounding box and predicted bounding box. If the 
predicted box is the same dimension and completely overlaps the ground truth box, then we have a 
perfect detection. The IoU calculates the ratio of the area of overlap to the area of union.  A higher IoU 
value indicates the predicted the bounding box closely resembles the ground truth bounding box. A 
threshold of IoU is defined in detection training. If IoU value is above the threshold, then it is considered 
as a successful detection. In this study the IoU threshold was set to 0.5. In machine learning 
classification problems, a confusion matrix, also known as an error matrix, is used for summarizing the 
performance of a classification model. The rows in confusion matrix represent the instance in an actual 
class, while the columns represent instances as a predicted class. Table 2 shows the basic structure of a 
confusion matrix. True positive (TP) means the sample is positive and the model successfully predicts 
this sample to be positive. False negative (FN) means the sample is positive but the model falsely 
predicts this sample to be negative. False positive (FP) means the sample is negative but the model 
falsely predicts this sample to be positive. True negative (TN) means the sample is negative and the 
model successfully predicts this sample to be negative. The calculation for other performance measures 
is based on the values in the confusion matrix.  

Table 2. Confusion Matrix 

  Prediction Condition 
 Total Population = P+N Predict Positive (PP) Predict Negative (PN) 

Actual Condition Positive (P) True Positive (TP) False Negative (FN) 
Negative (N) False Positive (FP) True Negative (TN) 

 

Accuracy is the ratio of number of correct predictions to total number of observations. It is the most 
intuitive performance measure. But when the dataset is unbalanced, accuracy may not be a good 
measure for model performance. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (𝐸𝐸𝐸𝐸. 1) 

Recall is the ratio of correctly predicted positive observations to all observations in actual class. It 
measures the ability of a model to find all the positive cases within a dataset. A high recall value means 
the model is performing well in identifying all true positive cases. Recall is a good performance metric 
when there is high cost associated with false negative. But recall cannot tell if there are true negative 
cases identified as false positive cases.  
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𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (𝐸𝐸𝐸𝐸. 2) 

Precision is the ratio of correctly predicted positive observations to the total predicted positive 
observations. It measures the ability of a model to find only the positive cases. A high precision value 
means most of the positive predictions are true positive cases. Precision is a good performance metric 
when the cost of false positive is high. Precision cannot tell if there are true positive cases identified as 
false negative cases.  

𝑇𝑇𝐴𝐴𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (𝐸𝐸𝐸𝐸. 3) 

Mean average precision (mAP) is the average precision for all recall values and for all classes at current 
IoU threshold. It is also the area under precision-recall curve. It is a metric that combines both recall and 
precision.   

Figure 5 shows the loss curves for training and validation. The curves convergence after 80 epochs; no 
sharp zigzags and no obvious overfitting can be observed. Table 3 presents the training results in detail. 
The mAP_0.5 refers to the mAP with an IoU threshold of 0.5. The mAP_0.5:0.95 refers to the value for 
the average of all mAP values with IoU threshold from 0.5 to 0.95 with 0.05 incremental interval. The 
trained model reaches a mAP_0.5 value at about 0.85, which means if IoU threshold is 0.5, the mean 
average precision is about 0.85. Figures 6 and 7 shows some examples for the comparison between 
ground truth and predicted results. From this batch of samples, the trained model can successfully 
identify most of the crosswalks.  

Table 3. Training Results 

Epoch Train loss Val loss Precision  Recall  mAP_0.5 mAP_0.5:0.95 
1 0.154237 0.137535 0.0079357 0.0086634 0.0017359 0.00058931 

10 0.0931694 0.084464 0.51194 0.39504 0.37174 0.15406 
20 0.0722603 0.0613809 0.70249 0.56879 0.63229 0.31862 
30 0.0597233 0.0520671 0.87268 0.65149 0.73951 0.47735 
40 0.0643798 0.0636455 0.63629 0.54802 0.54992 0.2677 
50 0.0575146 0.0528312 0.92266 0.66759 0.76652 0.47973 
60 0.0496196 0.0485755 0.92898 0.6928 0.79445 0.52391 
70 0.0456733 0.0410717 0.94102 0.72999 0.8232 0.60152 
80 0.0420052 0.0393135 0.9667 0.75032 0.83804 0.62662 
90 0.0393014 0.0364516 0.96957 0.75727 0.84943 0.66525 
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Figure 6. Training and validation loss curves 

 

 

                                        (a)                                                                                 (b) 

Figure 7. Examples of ground truth and predicted results for crosswalks, (a) ground truth, (b) predicted 
results.   
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                                   (a)                                                                                                    (b) 

Figure 8. Examples of ground truth and predicted results for bike sharrows, (a) ground truth, (b) 
predicted results. 

 

3.2. Stage 2: Automatic Road Marking Detection and Geo-location From LiDAR Point Clouds 
for City and County of Honolulu Roads 

For the second stage of this project, after the feasibility of a framework and approach for extracting 
road marking information from LiDAR point clouds collected by MLS systems used by the Hawaii State 
DOT was established on a subset of streets as described in section 3.1., the study area was expanded to 
include the entire area covered by the City and County of Honolulu.  

3.2.1. Data Acquisition and Processing 

The data acquisition and processing for Stage 2 of this project included the following steps: 

Step 1: The data processing begins with acquiring LiDAR points of road segments collected by Mandli, 
accessed through the Mandli Web Portal for HDOT (21). We specifically targeted road segments with 
roadway markings, specifically crosswalks and bike symbols. These segments were then processed to 
extract the desired road markings, which were subsequently enclosed within 3D bounding boxes. A 
representative instance is showcased in Figure 8.  
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Figure 9. Example of a captured bounding box around a road segment 

Selecting road segments manually only based on the presence of road markings can be a time-
consuming process. An alternative approach is automating the selection process by systematically 
moving along the road and exporting all encountered segments.  By including a wide range of 
heterogeneity in the road markings, we can develop a better model to detect road markings, even those 
outside our specific focus. This expanded dataset enhances the model's accuracy in identifying the road 
markings of interest. The dataset at this stage comprises LAS files, which is a standard file format for the 
interchange and archiving point cloud data. Each LAS file contains a road segment's point cloud. Our 
next step is to extract the ground points from point cloud data.  

Step 2: We performed a point cloud classification to differentiate between ground and non-ground 
points. By filtering out non-ground points, we narrow our focus to the road surface, improving the 
accuracy of road marking detection. Refining the road surface by filtering out non-ground points 
eliminates potential obstacles such as overhead electric light wires, ensuring a clearer representation of 
the road markings (Figure 9). By utilizing the 3D nature of the point cloud data, we can achieve a more 
unobstructed view of the road surface. 
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                                      (a)                                                                                      (b) 

 
 

 

Step 3: After removing non-ground points, we convert each point cloud into a 2D intensity images by 
projecting the three-dimensional point cloud data onto a two-dimensional plane. Figure 10 exemplifies 
this transformation.  

 

 

 

 

 

 

 

 

2D images provide a more intuitive and easily understandable representation of the 3D LiDAR data. 
Converting point clouds to 2D images simplifies the process of data analysis and annotation. Many well-
established computer vision algorithms and techniques are specifically designed for processing 2D 
images. Furthermore, LiDAR point clouds can contain millions of points, leading to high-dimensional 
data. By converting the point clouds to 2D images, the dimensionality is reduced, simplifying the data 
representation, and potentially reducing computational complexity.  

This question may arise that why was LiDAR data initially chosen over 2D images, and why wasn't a 2D 
dataset used from the beginning? One reason is LiDAR operates based on active sensing, emitting laser 
beams and measuring the time it takes for them to bounce back. This makes LiDAR less dependent on 
lighting conditions and immune to issues such as shadows, reflections, or changes in illumination. In 
contrast, images can be affected by variations in lighting and weather conditions, making them less 
reliable in certain scenarios. Moreover, in Mobile LiDAR Systems (MLS), LiDAR sensors are mounted on a 
vehicle’s roof. These sensors collect point cloud data as the vehicle is moving. Unlike satellite views, 

(a) (b) 

Figure 10. Removing Non-Ground Points:  a) Point Cloud with Non-Ground Points (including overhead 
electric light wires); b) 2D Intensity Image after Removing Non-Ground Points 

Figure 11. (a) original LiDAR data, and (b) corresponding 2D intensity images from the same point cloud 
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which provide an overhead perspective, LiDAR data offers a unique viewpoint from ground level. This 
perspective enables LiDAR to effectively address challenges related to road markings occlusion caused 
by objects such as, overpasses (Figure 11), and dense vegetation (Figure 12), particularly in regions like 
Hawaii with lush foliage. This capability enhances the completeness of road marking visualization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 4 (Annotation): At this stage, our dataset comprises 2D gray-scale images, forming the foundation 
for the subsequent object annotation step. To annotate the road markings within images, a team 
deployed to draw 2D polygon bounding boxes around the objects of interest, using the advanced 
annotation tool called Roboflow, as shown in Figure 13, we enclosed road markings inside axis-aligned 
bounding boxes. The annotated bounding boxes were then used to generate a labeled dataset, including 
the raw data of the bounding boxes, which is presented in Table 4. 

 

(a) (b) 

(a) (b) 

Figure 12. Comparing road marking visibility: (a) LiDAR data vs (b) satellite view with and overpass barrier. 
An example of a detected crosswalk which is hidden under the overpass from satellite view 

Figure 13. Comparing road marking visibility: (a) LiDAR data vs (b) satellite view with a vegetation barrier. 
An example of a detected bike sign which is hidden under the trees from satellite view 
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Table 4. Raw Data of the Bounding Boxes Annotated in Figure 13 provided in Roboflow 

RAW DATA 

box crosswalk bike sign 

label 2 3 

center_x 273.6 37.5 

center_y 106.25 213.45 

width 87.6 53.21 

height 191.37 31.49 

 

 

 

 

 

 

 

 

 

 

 

Roboflow, a computer vision platform, provides an intuitive interface for annotating and labeling 
images. Its annotation capabilities include the ability to create 2D polygon bounding boxes, which are 
bound the identification of road markings inside images. These bounding boxes are paired with labels, 
where each label represents a specific road marking class number. Roboflow's annotation management 
system stores image annotations as structured data in formats like JSON, Pascal VOC XML, or YOLO TXT, 
capturing bounding box coordinates, class labels, and metadata for each annotated object.  

To align with our chosen object detection algorithm, YOLO, we adopted the YOLO TXT format for 
annotations. In this format, each image is associated with a single text file containing a line for each 
bounding box annotation. The row format follows: "class_id center_x center_y width height". The fields 
are separated by spaces, and the coordinates are normalized between zero and one.  

This labeled dataset serves as the training data for our object detection model. Due to the time-
consuming and labor-intensive nature of object annotation, it poses a significant challenge in object 

Figure 14. Annotated Intensity Image of a Road Segment in Roboflow 
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detection projects. As a result, our current focus is primarily centered around crosswalks and bike signs. 
However, as we progress, we aim to expand our annotation efforts to include a wider range of road 
marking types. 

Step 5: The next step is dividing the dataset into three subsets for training, evaluation, and testing as 
follow: 

Training Set: 70% (838 images); Evaluation Set: 20% (240 images) 

Testing Set: 10% (120 images): The choice of splitting the dataset is based on common practices in 
machine learning. The larger portion allocated to the training set (70%) allows the model to capture the 
underlying patterns and characteristics of the dataset. The testing set (10%) serves as an independent 
benchmark to assess the model's ability to generalize to unseen data. It provides an unbiased evaluation 
of the model's performance. 

Evaluation Set (20%): Serves as a dedicated subset for assessing the model's performance. This subset 
helps in fine-tuning the model's parameters, optimizing its performance, and making informed decisions 
about any necessary adjustments during the training process. 

3.2.2. Training and Evaluating the Model 

This stage involves using YOLO (You Only Look Once), a real-time object detection algorithm that can 
detect objects in an image and provide bounding boxes and class probabilities for each object. The YOLO 
algorithm works by dividing an input image into a grid and making predictions for objects within each 
grid cell. Here is a summary of how YOLO detects objects: 

A. Architecture:  YOLOv5 consists of a series of convolutional layers, which are responsible for 
extracting features from the input image. These convolutional layers are followed by up-
sampling and down-sampling layers, which help capture features at different scales and 
resolutions. This multi-scale feature extraction enables the model to detect objects of various 
sizes in the input image. 
 

B. Grid Division: The input image is divided into a grid of cells. Each cell is responsible for predicting 
objects that fall within its boundaries. The size of the grid depends on the chosen configuration 
of YOLOv5 (e.g., YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x). A common configuration, for 
instance, is a 32x32 grid. 
 

C. Anchor Boxes: Prior to training, anchor boxes are defined. These anchor boxes represent a set of 
predefined bounding box shapes with different aspect ratios and sizes. Each grid cell predicts 
bounding boxes relative to these anchor boxes. The anchor boxes help in handling objects of 
various sizes and aspect ratios. 
 

D. Bounding Box Prediction: For each grid cell, YOLO predicts multiple bounding boxes. Each 
bounding box consists of coordinates (x, y) representing the box's center, width (w), height (h), 
and a confidence score indicating the likelihood of an object being present within the box. 
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E. Object Confidence: The confidence score represents the probability that an object is present in a 
predicted bounding box. It is computed based on the intersection over union (IoU) between the 
predicted box and the ground truth box during training. This score is used to filter out low-
confidence detections. 
 

F. Class Prediction: Alongside the object confidence scores, YOLOv5 also predicts class probabilities 
for each bounding box. These probabilities represent the likelihood of each detected object 
belonging to a specific class, such as a crosswalk of bike sign. 
 

G. Non-Maximum Suppression: To eliminate redundant or overlapping bounding box predictions, 
YOLO applies a technique called non-maximum suppression. This process removes duplicate 
detections and retains only the most confident bounding box for each object. 
 

H. Output: The final output of YOLOv5 is a list of bounding boxes, each associated with a class label 
and a confidence score. 

YOLO primarily detects objects within axis-aligned rectangular regions. An axis-aligned bounding box is 
defined by its top-left and bottom-right corners, and it aligns with the image's coordinate axes. For 
compatibility with our chosen object detection algorithm, YOLOv5, we also utilize non-rotated vertical 
oriented rectangle bounding boxes for annotation stage. 

We trained the model using the annotated dataset created in the previous stage and evaluated its 
performance using several metrics, including training loss, validation loss, recall, precision, and mean 
Average Precision (mAP). The loss function comprises of box loss, objectness, and classification loss. 

Table 5. Model Performance Metrics during Training and Validation Stages 

Train Validation All Road Markings 

box_loss obj_loss cls_loss box_loss obj_loss cls_loss precision recall mAP_0.5 mAP_0.5:0.95 

0.017342 0.0083676 0.00036619 0.020169 0.0055445 0.0038446 0.92253 0.79529 0.848 0.70291 

 

Before delving into the details, it is worthwhile to refresh our understanding of the meanings of several 
key terms: 

• True positives (TP) (#): The number of objects where the model predicts label 
• True Negatives (TN) (#): The number of objects where the model does not predict a label and 

the ground truth show the object not having a label 
• False Positives (FP): The model predicted a label, but it is not a part of the ground truth. 
• False Negatives (FN): The model does not predict a label, but it is part of the ground truth. 
• mAP: is calculated as the mean of the Average Precision (AP) values across multiple classes. AP is 

a metric that considers the precision-recall trade-off for a specific class. For instance, when 
precision increases and recall decreases, it means that the model is becoming more conservative 
in its predictions. It becomes more selective in detecting positive instances, resulting in fewer 
false positives but also missing some true positive instances. In this scenario, the precision may 
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improve due to the reduction in false positives, while the recall decreases due to missing some 
positive instances. 
 
The following provides a summary of each metric: 
 

1. Train/box_loss: This metric measures the loss associated with bounding box regression during 
the training phase. Bounding box regression refers to the process of predicting the coordinates 
(box's center) and sizes (width, and height) of the bounding boxes that tightly enclose objects in 
an image. The YOLOv5 algorithm aims to minimize this loss to accurately predict the positions of 
objects in an image . 
 

2. Train/obj_loss: This metric represents the loss associated with object detection during the 
training phase. It measures how well the algorithm is able to detect and localize objects within 
an image . Obj_loss is calculated based on the confidence scores assigned to each predicted 
bounding box. These confidence scores indicate the algorithm's level of certainty regarding the 
presence of an object within each bounding box. 
 

3. Train/cls_loss: This metric measures the loss associated with object classification during the 
training phase. It quantifies how accurately the algorithm assigns class labels to the detected 
objects . Each bounding box prediction is associated with a class probability distribution, 
indicating the likelihood of the object belonging to different predefined classes (e.g., crosswalk, 
bike sign, etc.) 
 

4. Precision: Precision (Eq.1) is a commonly used evaluation metric in object detection algorithms. 
It measures the proportion of correctly predicted positive instances (true positives) out of the 
total instances predicted as positive (true positives + false positives). A higher precision indicates 
a lower false positive rate . 

𝑇𝑇𝐴𝐴𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (𝐸𝐸𝐸𝐸. 1) 

5. Recall: Recall (Eq.2) is another commonly used evaluation metric in object detection algorithms. 
It measures the proportion of correctly predicted positive instances (true positives) out of the 
total positive instances present in the dataset (true positives + false negatives). A higher recall 
indicates a lower false negative rate . 

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (𝐸𝐸𝐸𝐸. 2) 

6. mAP_0.5: Mean Average Precision (mAP) at an Intersection over Union (IoU) threshold of 0.5. It 
means that the mAP is computed by evaluating the precision and recall of object detection at an 
IoU threshold of 0.5. IoU is a measure of the overlap between predicted bounding boxes and 
ground truth annotations. This threshold determines how much overlap is required for a 



 

22 
 

predicted bounding box to be considered a true positive. mAP_0.5 indicates how well the 
algorithm detects and localizes objects at a relatively lenient IoU threshold. 
 

7. mAP_0.5:0.95: Mean Average Precision (mAP) over a range of IoU thresholds from 0.5 to 0.95: 
This metric provides a more comprehensive evaluation of the algorithm's performance by 
considering multiple IoU thresholds. Instead of using a single IoU threshold like in the previous 
metric, mAP_0.5:0.95 evaluates the algorithm's performance across a range of IoU thresholds 
from 0.5 to 0.95. This range encompasses a wider spectrum of overlap criteria between the 
predicted and ground truth bounding boxes.  
 

8. val/box_loss: Similar to train/box_loss, this metric represents the loss associated with bounding 
box regression during the validation or evaluation phase . 
 

9. val/obj_loss: Similar to train/obj_loss, this metric represents the loss associated with object 
detection during the validation or evaluation phase . 
 

10. val/cls_loss: Similar to train/cls_loss, this metric represents the loss associated with object 
classification during the validation or evaluation phase. 

Monitoring and analyzing these metrics help us understand how well the model localizes objects, 
detects them accurately, assigns correct class labels, and balances precision and recall. By optimizing 
these metrics, we can improve the performance of the model and make it more reliable and effective in 
object detection tasks. 

3.2.3. Model Results 

The model achieved the mAP_0.5 score of 0.848 which suggests that the model was able to accurately 
detect almost 85% of the objects in the training dataset that had an IoU of 0.5 or higher for detecting 
both crosswalk and bike signs. Additionally, the results for crosswalks and bike signs separately show 
that the model is particularly strong in detecting crosswalks, achieving a mAP_0.5 score of 0.924. The 
mAP_0.5 score for bike signs is also relatively high, at 0.773. 

The mAP_0.5:0.95 score of 0.709 indicates that the model performed slightly less accurately for objects 
with a wider range of IoU values (ranging from 0.5 to 0.95), but still achieved a relatively high level of 
accuracy. The mAP_0.5:0.95 score of 0.821 for crosswalks and 0.604 for bike signs achieved. It is 
generally observed that object detection models, including YOLO models, tend to demonstrate higher 
performance at lower IoU thresholds since as the IoU threshold is increased, the model requires a higher 
degree of overlap with the ground truth annotations to classify a detection as a true positive. 

The higher mAP value for crosswalks compared to bike signs can be attributed to the larger dataset size 
of crosswalks (800 images) compared to bike signs (400 images), allowing model to learn crosswalks 
specific patterns and characteristics more effectively.  Additionally, the relatively simpler shape of 
crosswalks compared to bike signs likely contributed to the model's higher accuracy in detecting 
crosswalks. 
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After reviewing the training and validation results, we now shift our focus to the testing results 
presented in Table 6, illustrating the metrics of precision, recall, mean Average Precision (mAP), and F1 
(the measure of the harmonic mean of precision and recall) score. These metrics were evaluated using 
an IoU threshold of 0.5, which determines the level of overlap between predicted bounding boxes and 
the ground truth. If the IoU value is above a certain threshold, the predicted bounding box is considered 
a true positive detection, otherwise, it is classified as a false positive or a false negative. This threshold is 
often considered adequate for evaluating the accuracy of object localization tasks. The YOLOv5 model 
utilized in the testing phase is loaded with the pre-trained weights that were obtained during training 
the model on a separate training dataset. These weights correspond to the best performance of the 
model based on evaluation criteria such as loss on validation set. In the testing phase, the model 
performs object detection on each image within the testing dataset, which constitutes 10% of the 
overall dataset and includes 120 images. For every image processed, the model predicts bounding boxes 
and assigns confidence scores to different object classes. These confidence scores reflect the model's 
belief or probability that the corresponding bounding box contains an object of a specific class. To 
clarify, the IoU threshold is used to determine true positives and calculate precision and recall, while the 
confidence threshold is used to classify detections as positive or negative based on their confidence 
scores. Additionally, The F1 score is calculated as the harmonic mean of precision and recall (Eq.3). It 
provides a balanced measure of the model's accuracy, incorporating both precision and recall into a 
single value. 

 

𝐹𝐹1 =  2 ∗
𝑇𝑇𝐴𝐴𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅
𝑇𝑇𝐴𝐴𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

 (𝐸𝐸𝐸𝐸. 3) 

 

Table 6. Testing Results 

ROAD MARKING TYPE TP FP FN PRECISION RECALL F1 SCORE MAP_0.5 

Crosswalk 79% 3% 18% 0.963 0.814 0.882 
0.889 

Bike Sign 71% 0% 29% 1 0.71 0.83 
 

Figure 14, along with Table 6, serves as a comprehensive representation of the model's performance 
across 100 epochs during the training and evaluation process. It provides a visual depiction of the 
model's progression. During the initial epochs, the model's performance may be relatively poor, with 
high values for box_loss, obj_loss, and cls_loss. However, as training progresses, these loss values 
gradually decrease, indicating improved accuracy in object localization, objectness prediction, and 
object classification. Over time, precision and recall values increase, resulting in fewer false positives 
and false negatives. The mAP_0.5 and mAP_0.5:0.95 values also improve as the model's performance 
advances across IoU thresholds and object classes. 
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Figure 15. Model Performance Progression across Training and Evaluation through 100 epochs 

Figures 15, 16, and 17 showcase Performance Analysis across Confidence Thresholds. In F1-confidence 
Curve, the F1 score for all classes reaches a value of 0.85 at a confidence threshold of 0.684, this point 
on the curve represents a desirable operating point where both precision and recall are relatively high. 
In a precision-confidence curve, the precision for all classes reaches a value of 1 at a confidence 
threshold of 0.908, indicating that all the detections made by the model at this threshold are correct. In 
a recall-confidence curve, recall for all classes is 0.88 when the confidence threshold is set to 0.00.  
Recall measures the ability of the model to correctly detect positive instances.  This suggests that the 
model is capturing a relatively high proportion of positive instances, but it may also result in a higher 
number of false positives. 
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Figure 16. Precision-Recall Curve 

 

Figure 17. F1-Confidence Curve 
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Figure 18. Precision-Confidence Curve 

 

Figure 19. Recall-Confidence Curve 
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3.2.4. Geo-Locating 

In order to accurately locate road markings in their correct spatial position on the Earth's surface, a 
transformation process is employed to convert the pixel coordinates of an image to real-world 
coordinates. This transformation relies on the geo-referenced information contained in an auxiliary XML 
file generated during the conversion of LiDAR data to a raster image. The auxiliary XML file includes geo-
referencing parameters such as the pixel size, rotation angle, and the coordinates of the upper-left 
corner of the image. These parameters relate the pixel coordinates of a raster image to real-world 
geographic coordinates, and provide the starting point for our conversion process. First, we need to 
determine the pixel coordinate of the road marking within the image (The top-left pixel of the image is 
often assigned coordinates (0, 0)), we employ the pre-trained YOLOv5 model to predict the geometric 
properties of object bounding boxes. These properties include the top-left and bottom-right pixel 
coordinates of each bounding box. By leveraging this information, we can accurately identify the pixel 
location of the midpoint of the road marking. Once we have determined the pixel coordinate of the road 
marking within the image we can utilize the projected coordinates of the top-left corner of the image, 
along with the pixel size and rotation parameters, to project the road markings' coordinates onto the 
raster files' projected coordinates. Finally, we used a defined projection system with UTM zone 4 and 
the WGS84 ellipsoid to convert projected coordinates of the road markings to latitude and longitude, 
representing the geographic location on the Earth's surface. 

The following is an explanation of the projection system: 

(a) (b) 
Figure 20. Sample Representation of Object Detection with YOLO Algorithm – a) Annotated bounding 

box with ground truth labels b) corresponding predicted bounding boxes, labels, and confidence scores. 
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• UTM: Universal Transverse Mercator is a commonly used map projection system that divides the 
Earth into zones, each with its own projection parameters. UTM projections provide accurate 
measurements of distances and angles within each zone. 
 

• Zone: This parameter specifies the UTM zone number, which represents the specific zone within 
which the geographic coordinates fall. The UTM projection divides the Earth into 60 zones, each 
covering a strip of longitude. In this case, the choice of zone=4 indicates that the UTM zone 
being used is zone 4. This selection aligns with the dataset's geographic coverage of Hawaii 
roads and highways since Hawaii falls within UTM zone 4 . 
 

• Ellipsoid: This is the ellipsoid used for the projection. The Earth is not a perfect sphere, so map 
projections typically use an ellipsoidal model to approximate its shape. WGS84 (World Geodetic 
System 1984) is a widely used ellipsoid model commonly associated with GPS and global 
mapping . 
 

These parameters together define the projection system used for the transformation. In this case, the 
UTM projection is employed, specifically for UTM zone 4, with coordinates referenced to the WGS84 
ellipsoid. The output of this geo-locating section is a comprehensive map of crosswalks (31) and bike 
signs (32), which will be discussed in more detail. The map provides a comprehensive layer of crosswalk 
and bike sign locations within streets for which LiDAR data has been generated. The aerial overview of 
crosswalk and bike sign maps are illustrated in Figure 20 and Figure 21 respectively. It worth mentioning 
that the map is a work in progress and not yet complete. We are committed to continuously updating 
and expanding the map to include all existing road markings within the city boundaries. 

 

Figure 21. Aerial Overview of Crosswalks Map Including Source Street Boundaries 
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Figure 22. Aerial Overview of Bike Signs Map Including Bike Lanes 

The City Map stands out from other maps in two significant ways:  

1. Distinct Representation:  Unlike traditional maps where road markings, including crosswalks, are 
integrated into satellite views or other imagery, in this map, road markings are distinct data 
points, independent of satellite imagery, and separated from other map elements. In addition, 
satellite views can be hindered by various visual obstructions, such as vegetation, which may 
obstruct the visibility of markings on the road surface. By treating road markings as distinct data 
points, we eliminate these potential barriers . 
 

2. Enhanced Data Integrity: In contrast to other cooperative maps, the City Map minimizes the risk 
of manual errors associated with manually integrating road markings data into existing maps. 
Many interactive maps suffer from limited data availability and completeness, requiring 
significant manual effort to gather and update the information. The City Map overcomes these 
challenges by directly capturing and presenting crosswalk data as separate and reliable data 
points. This approach ensures the accuracy and completeness of the road markings information.  
 

3. Enhancing Cycling Infrastructure: The Bike Sign Map, offers an extensive view of bike lanes 
within streets where LiDAR data has been provided from. After detecting the locations of bike 
signs, we further determined the routes for bike lanes by connecting the bike signs together. 
Our ultimate goal is to bridge the gaps in existing bike lane infrastructure and create a more 
cyclist-friendly network.  

 

In the geo-locating stage, we aimed to quantify the discrepancy between the predicted location of road 
markings and the ground truth annotations. The analysis revealed an average positional discrepancy of 
5.61 feet between the centers of annotated bounding boxes and predicted bounding boxes for 
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crosswalks. For bike signs, the discrepancy was measured at 2.38 feet. Despite achieving a higher 
mAP_0.5 score for crosswalks, indicating better IoU performance, compared to bike signs, we observed 
a larger discrepancy in the geo-location of crosswalks. One potential explanation is the difference in size 
and shape between the two types of road markings. Crosswalks are typically larger and more irregular in 
shape, requiring larger adjustments for accurate geo-location. The relatively low values of discrepancy 
achieved are a testament to the precision and accuracy of our system in determining the spatial 
locations of road markings. 
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CHAPTER 4. FINDINGS AND DISCUSSION 

The goal of this project has been to investigate how the application of LiDAR technology for 
infrastructure asset management and inventories has expanded and become increasingly feasible, due 
partly to ubiquitous consumer access to LiDAR point clouds, and their emerging use in autonomous 
vehicle sensor systems. Additionally, many State DOTs have initiated regular collection of point clouds as 
part of their asset management efforts. In Mobile LiDAR Systems (MLS), LiDAR sensors are mounted on a 
vehicle’s roof. These sensors collect point cloud data as the vehicle is moving. 

As an example, the Hawaii Department of Transportation (HDOT) surveys, manages, maintains and 
inspects around 5,000 miles of highways across six islands in the State. In 2003, HDOT started collecting 
photo-log images via cameras mounted onboard a mobile data collection vehicle. Starting in 2009, a 
combined LiDAR/digital camera system was used to measure and record around 1,000 miles of roadway 
data on Oahu. The resulting point cloud data consisted of roughly 200 billion points (or 630 gigabytes of 
data). Similar survey efforts were initiated in 2011 and 2012 for the Island of Hawaii and Islands of Kauai 
and Maui respectively through a contract with Mandli Communications. 

Figure 22 below provides an overview of roadways in Hawaii were LiDAR point cloud data has been 
collected since 2009. 

 

Figure 23. Collected LiDAR point cloud data across State of Hawaii 
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An example of a high-resolution photo-log image and high-resolution LiDAR point cloud data for the 
same road intersection (Dole Street and East-West Road on the UH Manoa Campus) are shown in 
Figures 23 and 24. 

 

Figure 24. High-resolution photo-log image sample 

 

 

Figure 25. High-resolution LiDAR point cloud data sample 

The methods presented in Chapter 3 of this report have shown that the automatic detection and 
geocoding of relevant roadway assets may be possible through the analysis of LiDAR point cloud data. 
This approach has two major benefits. First, it eliminates the need for inspections and related work zone 
safety issues and second, this approach permits quicker detection and response to changing road 
conditions. Furthermore, attributing geocoded assets with other variables broadens the analysis 
possible and questions addressed including: 

 Safety Analysis: geocoded traffic incident data, 

 Census Tract Data: household socio-demographics, community data, and 

 Infrastructure Quality: pavement and roadway condition ratings. 
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As stated above, the main goal of this project has been the detection and geolocation of road markings 
such as crosswalks and bike symbols on roadways. Furthermore, we investigated the relationship of the 
presence of these road markings with observed crash rates. The map below shows the overall 
conceptual framework for the project for the same intersection shown in Figures 23 and 24. 

 

Figure 26. Conceptual framework for road marking detection using LiDAR data 

Utilizing LiDAR point cloud data for detection of road markings has certain advantages compared to 
satellite imagery. Examples of these advantages include detection of markings that would be blocked by 
other road facilities and natural obstructions such as trees. Figure 26 provides an example of a crosswalk 
on Kapiolani Boulevard that is blocked from satellite imagery by the H1 Interstate, and Figure 27 is an 
example of trees blocking a bike symbol. In both instances, the road markings can be detected using 
LiDAR point cloud data. 

 
                                                (a)                                                                             (b) 

Figure 27. Crosswalk (a) detected by LiDAR, and (b) obstructed from satellite imagery 
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                                           (a)                                                                                          (b) 

 

4.1. Analysis Framework 

The analysis framework developed for this project involved (a) preprocessing of data, through which 2D 
images were extracted from LiDAR point clouds; (b) developing a detection model using YOLOv5, 
including training and testing/validation of the model; (c) applying the developed detection model to 
HDOT point clouds to detect road markings; and (d) using the geocoded locations of roadway symbols 
for a safety analysis, through a Poisson Regression Analysis on bike and pedestrian incident data. Figure 
28 below visualizes the analysis framework. 

 

Figure 29. Analysis Framework 

Figure 28. Bike symbol (a) detected by LiDAR, and (b) obstructed from satellite imagery 
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4.2. Detection Model 

The detection model was YOLOv5 (You Only Look Once) model, an off-the-shelf model implemented in 
Python based on Neural Network modelling. This model is used to identify objects within a 2D image. A 
total of 1,198 annotated images were used for model training and testing, of which 70% (838 images) 
were used for training, 20% (240 images) used for evaluation, and 10% (120 images) for testing. The 
roadway coverage for the development of the model, including training and testing/validation, covered 
key streets in the City and County of Honolulu, based on a discussion with Hawaii Department of 
Transportation (HDOT) and the Department of Transportation Services. Evaluation metrics for this 
model include: 

• Precision = True Positive/(True Positive + False Positives), 
• Recall = True Positive/(True Positive + False Negatives), and 
• Confidence Score (0-1): Likelihood the object is in the detected box. 

A Precision-Recall Curve, showing the Mean Average Precision (area under the P-R curve) was calculated 
to assess the performance of the model as shown in Figure 29. The results show a detection of nearly 
85% objects. However, the model performed better in the detection of crosswalks than bike markings. 

 

Figure 30. YOLOv5 Model Precision-Recall Curve for 1,198 images 

The F1-Confidence Curve shown in Figure 30 signifies that the optimal point for the model is reached at 
an F1 value of 0.85, corresponding with a confidence threshold of 0.684. 
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Figure 31. YOLOv5 F1-Confidence Curve for 1,198 images 

The next step in the project was to use the detected roadway markings for a safety analysis. Additional 
roadways from northern and western shores of the island of Oahu, as well the cities of Wahiawa and 
Haleiwa were included within the analysis framework described above. A total of 1,071 crosswalks and 
517 bike symbols were detected throughout this process, as shown in Figures 31 and 32. 

 

Figure 32. Detected crosswalks based on the YOLOv5 model (n = 1,071) 



 

37 
 

 

Figure 33. Detected bike symbols based on the YOLOv5 model (n = 517) 

4.3. Safety Analysis 

Several data sources were used for safety analysis, which included: 

• HDOT Point Cloud Data (accessed January 2022) 
• Pedestrian-involved and bicycle-involved major traffic crashes (between January 2019 and 

December 2022) as shown in Figure 33. 
• US Census Tract Level Demographics (2022) 
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Figure 34. Bike (blue) and pedestrian (red) crashes on Oahu 2019-2022 (n = 328) 

We used a Poisson Regression Analysis on crash counts to analyze safety across census tracts, with the 
observed outcomes of number of crashes per Census Tract. Explanatory variables included: 

• Number of Identified Assets from the Model 
• Model Performance 
• Census Tract Demographics 

Model estimation results for pedestrian crashes across Census Tracts on Oahu are presented in Table 7: 

Table 7. Model estimation results for pedestrian crashes 

Variable Estimate Std. Error t-statistic 
Constant 2.618 0.5865 4.464 

Number of Detected Crosswalks 0.02577 0.003097 8.321 
Model Performance: Mean Confidence -0.1877 0.07153 -2.624 

Population density (ppl/km-sq) -2.6E-05 7.08E-06 -3.611 
Total Road Length (km)/Tract Area (km-sq) 0.06028 0.007638 7.893 

Hawaiian Homelands (km-sq)/Tract Area (km-sq) -0.5372 0.3716 -1.446 
Number of Census Tracts 108 

Residual Deviance 89.585 
 

Bike and Pedestrian Crashes 2019-2022 

n = 328 
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The model shows that Census tracts with a greater detection of crosswalks showed higher crash rates, 
and Tracts with a higher mean confidence scores (related to marking quality) showed lower crash rates. 

Model estimation results for bike crashes across Census tracts on Oahu are presented in Table 8: 

Table 8. Model estimation results for bike crashes 

Variable Estimate Std. Error t-statistic 

Constant 4.424 0.5881 7.523 

Number of Detected Bike Symbols 0.01107 0.002705 4.093 

Model Performance: Mean Confidence -0.4445 0.06946 -6.399 

Population density (ppl/km-sq) -7.2E-05 2.57E-05 -2.814 

Total Road Length (km)/Tract Area (km-sq) 0.01822 0.01847 0.987 

Number of Census Tracts 108 

Residual Deviance 420.7 

 

Similar to results for pedestrian crashes, the model shows that tracts with a greater detection of bike 
symbols showed high crash rates, and tracts with detected symbols that have a higher mean confidence 
(greater marking quality) showed lower crash rates. 

Furthermore, it can be concluded that higher population density tracts are associated with lower crash 
rates, and higher roadway length to tract area ratios are associated with higher crash rates, though this 
was statistically insignificant for bike crashes. For pedestrian crashes, tract areas with higher areas of 
Hawaiian Homeland per tract area show lower pedestrian crash rates, but this too was not statistically 
significant. 
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CHAPTER 5. CONCLUSIONS 

LiDAR is a technology for 3D mapping that is widely used in civil infrastructure asset management and 
inventories. Several State DOTs, including Hawaii State Department of Transportation (HDOT), have 
taken the advantage this to collect point clouds for transportation infrastructure asset management. 
This study demonstrates an application of LiDAR point clouds in identifying non-motorized infrastructure 
elements, focused on developing an automated method for extracting, detecting, and geo-locating road 
markings from LiDAR point clouds. The utilization of LiDAR technology provided several advantages, 
including robustness to lighting conditions, and overcoming visual barriers.  

ArcGIS Pro was used for data preprocessing, which including ground identification, intensity image 
generation, and training sample preparation. A YOLOv5 object detection model was trained for road 
marking detection on the rasterized point clouds. Through the training of the YOLOv5 object detection 
algorithm, the model achieved promising results in accurately detecting and localizing road markings, 
including crosswalks and bike signs. The mAP_0.5 score of 0.848 showcases an overall accuracy of 
approximately 85% for detecting road markings with an IoU threshold of 0.5 or higher.  

The geo-transforming process enabled precise spatial location of road markings on the Earth's surface, 
the average positional discrepancy error between the centers of predicted and ground truth bounding 
boxes was measured to be 5.61 feet for crosswalks and 2.38 for bike signs. There are limitations in this 
study. The attributes available for analysis in LiDAR dataset was limited, the manual labeling process 
would also consume a high number of man-hours. The long-term objective of study is to develop an 
automatic infrastructure mapping and surveying process, which will be convenient for engineering 
applications. Future studies will consider a more robust and widely applicable LiDAR based 
infrastructure detection system. A more efficient data labeling process and infrastructure LiDAR 
database also need to be built. 

Overall, these results demonstrate our success in minimizing the discrepancy between predicted and 
ground truth locations, indicating the effectiveness of our geo-locating approach. The generated 
comprehensive map of crosswalks and bike signs provides a distinct representation of road markings 
which eliminates visual obstructions and minimizes the risk of errors associated with manually 
integrating road markings into existing maps. 

Over time, the availability of data for digital models of infrastructure systems that support active travel 
has improved. This includes an increasing availability of LiDAR point clouds, high-resolution 
photogrammetry, crowdsourcing of GPS data, and geocoded community feedback (such as tweets, 
smartphone photos, etc. However, several barriers and issues remain before these models and related 
data can be fully harnessed. The necessary workflow for model creation and analysis is complicated. For 
example, processing of geospatial data can be a daunting task. Furthermore, objects differ in difficulty of 
detection due to complexity in geometry, such as crosswalks and bike symbols. In addition, automated 
detection using deep learning requires large volumes of data training. Finally, as with similar studies, 
issues related to representativeness of models still exist. 

There are limitations to this study. As the attributes available for analysis in the LiDAR dataset was 
limited, the manual labeling process also consumed a large number of man-hours. The long-term 
objective of the study was to develop an automatic infrastructure mapping and surveying process, which 
will be convenient for engineering applications. Future studies will consider a more robust and widely 
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applicable LiDAR based infrastructure detection system. A more efficient data labeling process and 
infrastructure LiDAR database also need to be built. 
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