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EXECUTIVE SUMMARY 

Safety equity is a critical concern for rural communities and American Indian and Alaskan Native (AI/AN) 

populations, who face disproportionate rates of serious injuries, fatalities, and general collisions. 

Despite these disparities, there are significant gaps in understanding the demographics of collisions, 

particularly in tribal communities where law enforcement jurisdictions are complex, and individuals may 

misreport their tribal status to gain benefits, leading to biases in collision data. This study addresses 

these gaps by developing a statistical model that predicts the true demographics of collisions to enhance 

safety equity. The ecological regression model is employed, which accounts for individual-level 

characteristics influencing collision rates. Focusing on Yakima County, Washington, a rural area with a 

large reservation, the Yakama Nation, this study examines the impact of household income and AI/AN 

status on collision rates across three collision categories: all collisions, injury collisions, and fatal 

collisions. Results indicate that lower-income individuals are slightly overrepresented in collisions, while 

higher-income individuals are underrepresented. AI/ANs, however, are significantly overrepresented in 

all collision types, being 3.8 times more likely to be involved in fatal collisions compared to the general 

population. These findings demonstrate the utility of ecological regression in revealing the true 

demographics of collisions and highlight critical safety equity issues in rural and AI/AN communities. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Safety is a critical concern in the field of transportation. Over time, traffic fatalities and serious injuries 

have continued to rise in the United States (Washington Traffic Safety Commission 2019). This trend is 

especially true in American Indian and Alaskan Native (AI/AN) and rural communities. Both of these 

areas see a disproportionate rate of fatal and serious injury collisions when compared to both the 

national average and nearby urban areas. Fatality rates are nearly double for those living in rural 

communities (Federal, 2012). AI/ANs are also nearly four and a half times as likely to be killed in a fatal 

collision than non-native populations in the state of Washington (Washington,2019). These disparities 

highlight a significant equity concern due to the disproportionate distribution of collisions to these 

historically disadvantaged communities. 

The root causes of these disparities are multifaceted and complex, involving a combination of socio-

economic, infrastructural, and behavioral factors. Rural areas often suffer from underfunded and poorly 

maintained road infrastructure, which can lead to hazardous driving conditions. Additionally, emergency 

response times in these areas are generally longer due to the greater distances that need to be covered. 

This delay can be critical in determining the survival and recovery outcomes of those involved in serious 

collisions. The socio-economic context also plays a significant role, as individuals in rural and tribal 

communities may have less access to newer, safer vehicles and may lack the resources for regular 

vehicle maintenance. 

Furthermore, the behavioral aspects of traffic safety in rural and tribal communities cannot be ignored. 

Higher incidences of risky driving behaviors, such as speeding, driving under the influence of alcohol or 

drugs, and lower seatbelt usage rates, are often reported in these areas. These behaviors are 

exacerbated by the limited presence of law enforcement and traffic safety campaigns that are more 

prevalent in urban areas. The cultural context within AI/AN communities also adds layers of complexity, 

where traditional practices and beliefs may influence driving behaviors and attitudes towards traffic 

safety regulations. 

Despite these observed disparities in safety equity for rural and tribal communities, there are still 

significant gaps in the understanding of the demographics of collision victims for these communities. 

Tribal communities especially encounter significant jurisdictional issues related to the recording of 

demographics in collisions. Tribal communities on and around reservations already have significantly 
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more jurisdictional crossover and confusion in law enforcement, having to account for not only city, 

county, and state patrol law enforcement but also tribal police, Bureau of Indian Affairs (BIA) law 

enforcement, and the Federal Bureau of Investigation (FBI). This already leads to more confusion and 

errors in the reporting of collisions as each law enforcement agency has different policies and historical 

behavior related to duties of traffic enforcement and collision response. Beyond this, the implications of 

dealing with each of these different law enforcement groups for a tribal member can vary widely 

depending on the context. Therefore, it is not uncommon for tribal members to selectively report their 

membership to the tribe only when the context of the particular incident would be in their favor. This 

leads to further significant biases in the demographic data related to collisions in tribal communities 

where there is no guarantee that tribal members will accurately report their true demographics. 

The jurisdictional challenges are compounded by historical mistrust between tribal communities and 

external law enforcement agencies. This mistrust stems from a long history of discrimination, 

marginalization, and broken treaties, leading to a lack of cooperation in data sharing and enforcement of 

traffic laws. Moreover, the fragmentation of law enforcement responsibilities often results in 

inconsistent data collection methods and standards, further affecting the accuracy of collision data 

(Smith, 2023). 

This paper addresses this key gap in understanding uncertain collision demographics by utilizing 

statistical methods to predict the true demographics of those involved in collisions in a rural and tribal 

community. The statistical methodology used in this paper is called ecological regression. This technique 

can utilize the individual level characteristics of collision data to extract a true estimation of the 

demographics described by the data (Jackson, 2006). This paper conducts a case study in Yakima County 

of Washington State. This county has a major tribal community present, as it is home to the majority of 

the Yakama Nation Reservation. This study will help address the key safety equity issue by providing 

better understanding of the demographics involved in collisions which can help to better target the 

most pressing safety issues faced by these communities through the four E’s of traffic safety: 

Engineering, Education, Enforcement, and Emergency Services. 

Engineering interventions can include the redesign of hazardous road segments, the installation of 

better signage and lighting, and the implementation of traffic calming measures to reduce speeds. 

Education efforts could focus on culturally sensitive outreach programs that resonate with AI/AN 

communities, promoting safe driving practices and increasing awareness of traffic laws. Enforcement 

strategies might involve enhancing the presence and capabilities of tribal law enforcement agencies and 
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fostering cooperation with other jurisdictions to ensure consistent application of traffic safety 

regulations. Finally, improving Emergency Services could mean better training for first responders on 

handling collisions in tribal areas and ensuring faster response times to these often-remote locations. 

The case study in Yakima County aims to serve as a model for other regions with similar demographic 

and jurisdictional challenges. By providing a clearer picture of the true demographics involved in traffic 

collisions, policymakers and community leaders can develop targeted interventions that address the 

unique needs of rural and AI/AN populations. This approach not only aims to reduce traffic fatalities and 

injuries but also strives to rectify long-standing inequities in traffic safety. 

In conclusion, addressing the safety disparities in rural and tribal communities requires a comprehensive 

understanding of the underlying factors contributing to higher fatality and injury rates. Through the 

application of advanced statistical methods and a focus on the four E's of traffic safety, this paper seeks 

to provide actionable insights that can inform better policy decisions and ultimately save lives. The 

findings from Yakima County can pave the way for broader initiatives aimed at improving traffic safety 

equity for all underserved communities across the United States. 

1.2. Practical Application 

Safety equity remains a critical issue for rural and AI/AN communities, both of which face 

disproportionately high rates of collisions. This study contributes to addressing this issue by presenting a 

method to estimate the true demographics of individuals involved in traffic collisions through statistical 

modeling. This approach allows safety practitioners to better understand which demographic groups are 

more likely to be involved in collisions, thereby providing valuable insights to address safety equity 

issues faced by disadvantaged communities. The methodology can be applied to a wide range of 

demographic categories, including income, race, and more. 

The study specifically examines the AI/AN population in Yakima County, Washington, revealing that 

these populations are approximately 3.8 times more likely to be killed in a fatal collision compared to 

the general population. This finding underscores the importance of targeted safety interventions. The 

ability to accurately predict collision demographics can guide the allocation of resources and the 

development of policies aimed at reducing collision rates among overrepresented groups. For example, 

implementing targeted educational campaigns, enhancing law enforcement efforts, and improving 

infrastructure in areas with high rates of collisions can significantly impact safety outcomes. 
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In practice, the methodology outlined in this study can be expanded to other communities across the 

state of Washington and beyond. By applying ecological regression to various regions, researchers and 

policymakers can gain a more comprehensive understanding of the safety and equity concerns faced by 

different communities. This broader application can identify critical safety issues and guide the 

implementation of targeted interventions to achieve safety equity. Moreover, the study highlights the 

necessity of addressing jurisdictional complexities in tribal areas. Improved coordination between 

different law enforcement agencies and standardized reporting practices can reduce biases in collision 

data, leading to more accurate demographic profiles and better-targeted safety measures. This 

approach aligns with the four E's of traffic safety: Engineering, Education, Enforcement, and Emergency 

Services, providing a holistic framework to address safety equity issues. 

The results of this study also have significant implications for Vision Zero initiatives, which aim to 

eliminate all serious injuries and fatalities on roadways. By understanding the true demographics of 

collisions, Vision Zero strategies can be more effectively tailored to address the specific needs of high-

risk groups, particularly in rural and tribal communities. This targeted approach can help bridge the gap 

in safety equity and contribute to the overall goal of reducing traffic-related fatalities and injuries. The 

methodology can also be adapted to other historically disadvantaged communities, providing a valuable 

tool for researchers and policymakers to address safety disparities. By utilizing advanced statistical 

methods, such as machine learning and artificial intelligence, the predictive accuracy and explanatory 

power of collision models can be further enhanced, leading to more effective safety interventions. 

In conclusion, this study provides a robust framework for understanding and addressing safety equity in 

rural and AI/AN communities. By accurately predicting the demographics of collisions, policymakers can 

implement targeted interventions to reduce disparities and improve overall traffic safety. The 

application of ecological regression and other advanced statistical methods represents a significant 

advancement in achieving safety equity and ensuring that all communities benefit from safe and 

equitable transportation systems. 
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CHAPTER 2. LITERATURE REVIEW 

To address the issue of unknown demographics in collision reporting and to understand the impact that 

it has on equity in traffic safety, it is crucial to first define equity explicitly within this context. 

Transportation, as a multifaceted domain, evokes a myriad of definitions and interpretations of equity, 

each with its nuances and implications. The concept of equity in transportation can be approached from 

various theoretical perspectives, each proposing different criteria for what constitutes a ‘just’ 

distribution of resources and outcomes. One such comprehensive framework is provided by Lewis et al. 

(2021), who discuss the plurality of equity theories. According to Lewis, there are fundamentally 

different, and sometimes conflicting, theories on how resources should be distributed to achieve justice. 

This divergence in perspectives necessitates a clear and context-specific definition of equity, particularly 

in traffic safety, where the stakes involve both human lives and societal well-being (Lewis et al., 2021). 

A notable study by Martens and Golub (2021) mirrors this idea by proposing a normative framework for 

addressing equity in transportation. They introduce a four-rung ladder that utilizes different 

interpretations of Title VI of the Civil Rights Act to define equity. The rungs of the ladder, in ascending 

order, are: Explicit Non-Discrimination, Pareto-Plus Improvement, Proportional Equity, and Restorative 

Justice (Martens and Golub 2021). The first rung, Explicit Non-Discrimination, mandates that 

transportation policies and practices should not explicitly discriminate against any demographic group. 

This is the most basic form of equity, ensuring that no overt bias exists in the allocation of resources. 

The second rung, Pareto-Plus Improvement, goes a step further by suggesting that changes in the 

transportation system should benefit at least one person without making anyone else worse off. This 

principle, while still conservative, begins to acknowledge the need for improvements that consider the 

well-being of all. Proportional Equity, the third rung, argues for a distribution of resources such that the 

intended outcomes are equally shared among the entire population. This rung emphasizes equal access 

and benefits, ensuring that transportation services do not disproportionately favor or disadvantage any 

particular group. The fourth and highest rung, Restorative Justice, incorporates the principles of 

Proportional Equity but extends them to address historical injustices. This involves not only equal 

distribution but also compensating for historically denied benefits, thereby attempting to rectify past 

inequities and provide a more comprehensive form of justice. These differing interpretations underscore 

the complexity of defining and achieving equity in transportation. The ladder framework elucidates the 

transition from basic non-discrimination to a more nuanced and historically aware understanding of 

justice (Martens and Golub 2021). 
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The implications of these concepts are profound, as transportation plays a vital role in societal 

functioning by providing access to essential goods and services. Pereira et al. (2021) highlights that the 

historical and ongoing inaccessibility of these resources can significantly hinder community growth and 

development. Addressing these inequities through the lens of justice aims to rectify past wrongs and 

promote a more equitable society. Hence, defining equity in transportation requires a multifaceted 

approach that considers both present and historical contexts (Pereira et al., 2021). By adopting a 

comprehensive framework, policymakers can better address the nuances of equity and work towards a 

more just distribution of transportation resources and outcomes. 

In many instances, local implementations of equity in transportation have produced varying results, 

reflecting the diverse methods used to define and quantify equity (Lewis et al., 2021). These variations 

highlight the complexity and challenges of achieving equitable outcomes. While many current 

municipalities employ some form of aggregate equity metrics to guide their projects, these metrics 

often prove inadequate. Aggregate metrics can obscure significant variations within demographic 

groups and fail to account for the differing needs of various populations in terms of access to resources 

(Martens and Golub, 2022). This shortfall can lead to suboptimal and inequitable distributions of 

resources. 

A prime example of this issue is illustrated in a study conducted in California. The study found that 

Metropolitan Planning Organizations (MPOs), when attempting to enhance public transit services, 

typically focused on increasing transit availability within urban cores (Heyer et al, 2020). This strategy 

was chosen because it promised the greatest aggregate benefits, such as increased ridership, reduced 

vehicle miles traveled, and lowered air pollution. However, this approach systematically neglected some 

of the poorest communities. These communities, driven to the fringes of metropolitan areas by rising 

housing costs, were underserved by transit improvements concentrated in urban centers. Consequently, 

the equity goals of these initiatives were undermined, exacerbating existing inequalities rather than 

alleviating them (Heyer et al., 2020). 

Addressing these challenges requires more sophisticated methodologies that can capture the nuances of 

equity. One such approach is the robust decision-making (RDM) method. RDM is designed to handle 

deep uncertainty and is particularly useful in planning for equitable outcomes. It involves evaluating a 

wide range of scenarios to identify strategies that are robust across different possible futures. By 
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considering numerous potential outcomes, RDM aims to ensure that equity goals are met more 

consistently and effectively, even under varying conditions (Lempert et al., 2020).  

These issues are not confined to transit equity but are also prevalent in traffic safety. The interpretation 

of equity in traffic safety can vary, encompassing multiple aspects of the equity ladder described earlier. 

For the purposes of this study, the focus will be on the top two rungs: proportional equity and 

restorative justice, which are widely recognized as standards for transportation equity (Martens and 

Golub 2021). In traffic safety, proportional equity is achieved by reducing or eliminating disparities in 

collision rates among different demographic groups. This means that collisions should be 

proportionately distributed, ensuring no demographic group bears a disproportionate burden of traffic 

incidents. Achieving proportional equity involves targeted interventions that address specific needs and 

vulnerabilities of different groups. Restorative justice in traffic safety takes a more ambitious approach. 

It seeks not only to equalize collision rates but also to address historical injustices that have contributed 

to current disparities. Restorative justice aims for the complete elimination of serious injuries and 

fatalities, acknowledging that proportional rates alone do not rectify past inequities. This principle is 

embodied in the Vision Zero movement, which aspires to eliminate all serious injuries and fatalities on 

roadways. Vision Zero's goals are intrinsically linked to restorative justice, emphasizing comprehensive 

safety measures that account for historical and contextual factors (Kim et al., 2020). 

This study aims to contribute to this framework by improving the understanding of the demographics 

involved in collisions. By identifying the most affected groups, more effective and targeted campaigns 

can be developed to reduce collision rates and severity. This targeted approach is essential for achieving 

both proportional equity and restorative justice in traffic safety, ensuring that interventions are not only 

equitable but also just. 

The concept of Vision Zero is particularly relevant in this context. Vision Zero advocates for a holistic 

approach to traffic safety, integrating infrastructure improvements, policy changes, and community 

engagement to achieve its ambitious goals. This movement recognizes that every traffic death is 

preventable and that achieving zero fatalities is a moral imperative. By focusing on systemic changes 

and community-specific strategies, Vision Zero aims to create safer road environments for all users. 

Implementing Vision Zero principles involves a range of strategies, from redesigning dangerous 

intersections and improving pedestrian crossings to enforcing traffic laws and promoting safe driving 
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behaviors. These measures are designed to protect the most vulnerable road users, including 

pedestrians, cyclists, and motorcyclists, who are often disproportionately affected by traffic collisions. 

Furthermore, achieving restorative justice in traffic safety necessitates a shift in how we approach and 

prioritize safety interventions. It requires acknowledging and addressing the historical and systemic 

factors that have contributed to inequitable safety outcomes. This includes investing in underserved 

communities, ensuring equitable access to safe transportation options, and actively involving 

community members in decision-making processes. 

In conclusion, addressing equity in transportation and traffic safety requires a multifaceted approach 

that combines proportional equity and restorative justice. By employing targeted interventions and 

robust methodologies, policymakers can work towards a more equitable and just transportation system. 

This study contributes to this effort by enhancing our understanding of collision demographics, enabling 

more effective and equitable safety campaigns. Through these efforts, we can move closer to the vision 

of eliminating all serious injuries and fatalities on our roadways, ensuring that safety benefits are 

distributed fairly across all demographic groups. 
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CHAPTER 3.  METHODOLOGY AND RESULTS FOR THE MAIN PROJECT 

3.1. METHODOLOGY 

This paper employs ecological regression to statistically analyze the demographics of traffic collisions in 

Yakima County, Washington State. Situated in the central part of the state, Yakima County lies east of 

the Cascade Mountains, far removed from the bustling urban centers of the greater Seattle area. The 

county's primary urban hub is the city of Yakima, which boasts a population just over 90,000 residents. 

Apart from Yakima, the county is predominantly rural, characterized by several small towns, extensive 

wilderness areas, and vast tracts of farmland that contribute significantly to the local economy. 

Yakima County is also notable for hosting one of the largest American Indian/Alaska Native reservations 

in Washington State, the Confederated Tribes and Bands of the Yakama Nation (Wikipedia, 2024). The 

Yakama Nation, a federally recognized tribe under the Camp Stevens Treaty of 1855, currently occupies 

a reservation that spans an impressive 1.37 million acres (StoryMaps, 2021). The towns of Toppenish 

and Wapato serve as the primary population centers within the reservation. This reservation is a major 

agricultural powerhouse, known for producing nearly $2 billion in agricultural products annually, which 

underscores its vital role in both the local and state economies (StoryMaps, 2021). 

Despite its agricultural prosperity, Yakima County faces significant traffic safety challenges. Recent data 

from the Washington Traffic Safety Commission (2019) indicate that Yakima County has experienced the 

highest number of fatal roadway collisions and pedestrian fatalities in the state. This alarming trend 

highlights the urgent need for targeted traffic safety interventions and policy measures to mitigate the 

risks faced by both residents and visitors. 

In addition to these concerns, the unique demographic composition of Yakima County, which includes a 

substantial population of American Indian/Alaska Native individuals, necessitates a nuanced 

understanding of traffic safety issues. The diverse population dynamics and varying levels of 

infrastructure development across urban and rural areas contribute to the complexity of addressing 

traffic safety in the region. The findings of this paper, which leverage ecological regression techniques, 

aim to provide insights into the specific demographic factors associated with traffic collisions, thereby 

informing more effective and equitable traffic safety strategies. 

To aid in visualizing the geographic context, a map of Yakima County and the Yakama Nation is included 

in Figure 3-1. By integrating statistical analysis with geographic visualization, this paper seeks to offer a 
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comprehensive overview of the traffic safety landscape in Yakima County, ultimately contributing to the 

development of data-driven solutions to enhance roadway safety for all community members. 

 

Figure 3-1 Yakima Nation geographic context 

Two data sources were utilized in this study. The first source is collision data collected from 2018 to 

2021 from the Highway Safety Information System (HSIS), and the second source is Census data 

collected from the 2020 American Community Survey 1-year estimate. These datasets provide the 

essential information needed to conduct this study comprehensively. The collision data includes records 

for most reported collisions across the entire state of Washington, although this study specifically 

focuses on Yakima County. These collision records are primarily generated through police reports, which 

can be subject to biases such as those previously mentioned regarding demographic reporting. The 

second data source is Census data, which offers crucial demographic information, including household 

income and racial characteristics. Both of these data sources are indispensable for statistically analyzing 

the demographics involved in collisions. By integrating collision data with detailed demographic 

information from the Census, the study aims to identify patterns and correlations that may exist 

between collision occurrences and various demographic factors. This dual-source approach allows for a 

more nuanced understanding of the factors contributing to collisions in Yakima County, facilitating 

targeted interventions and policy recommendations. 
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To facilitate this goal, ecological regression models are employed to predict the true demographics of 

collisions throughout Yakima County. Ecological regression is an ideal statistical technique for achieving 

this objective as it can account for individual characteristics to calculate the probabilities that people of 

different demographic characteristics are represented in transportation datasets (Jackson 2006). This 

technique can be applied to estimate the demographic profile for various transportation networks by 

calculating the odds ratios for each demographic strata of interest, determining the probability that 

each demographic group will be over or undercounted (see Ricord 2023 for more details). In this 

context, ecological regression will be used to calculate the demographic profiles of the collision records 

accurately. 

This analytical process will be conducted twice: once for household income demographics and once for a 

binary selector indicating whether a collision involved an AI/AN (American Indian/Alaska Native) 

individual or not. For each of these demographic categories, three distinct models will be created to 

analyze the demographics of all collisions, injury collisions, and fatal collisions. This approach 

necessitates the development of six total models to comprehensively understand the demographics of 

collisions within the county. 

By creating these models, the study aims to provide a detailed analysis of the demographic factors 

associated with different types of collisions, enabling a deeper insight into the relationship between 

demographic characteristics and collision occurrences. This multifaceted modeling approach will help 

identify specific patterns and trends, which can then inform targeted interventions and policy decisions 

aimed at improving road safety and addressing any identified disparities. 

The output of these models will enable the direct estimation of the true demographic profiles of each 

scenario, specifically the demographics of those involved in the collisions. These models achieve this by 

linking the locations of crashes to the geographically defined demographics provided by Census data. 

This approach yields the predicted percentage of crashes associated with each demographic stratum. 

From these predictions, the over- or under-representation of each stratum is calculated to reveal the 

true distribution of collisions across different demographics. Consequently, conclusions can be drawn 

about the actual rate of collisions for various critical demographic groups. 

This basic technique has been employed in previous studies to determine the true demographics of 

collision data. Several studies have utilized Bayesian ecological regression models to analyze road 

mortality. For instance, a study conducted in Europe aimed to understand regional differences in fatality 



 

13 
 

rates, seeking to derive explanatory results for collisions (Eksler, 2008). Another similar study was 

conducted in Tunisia (Kammoun 2020). However, this study differs from those in several significant 

ways. Firstly, this study uses a different type of ecological regression model known as Goodman’s 

Method of Bounds regression. The choice of this model is driven by the differing goals of the studies; 

while the aforementioned studies aimed to explain collisions based on population density, this study 

aims to predict collisions based on demographics. Although the fundamental concept of the statistical 

model is similar, Goodman’s Method of Bounds ecological regression models are better suited to this 

study’s specific objectives than Bayesian ecological regression models, and thus were chosen for use in 

this analysis. 

By leveraging Goodman’s Method of Bounds, this study aims to provide more precise predictions 

regarding the demographics involved in collisions. This methodological choice enhances the ability to 

accurately identify demographic patterns and disparities in collision occurrences. The refined approach 

ensures that the study's findings are robust and directly applicable to the development of targeted 

safety interventions and policy recommendations. 

3.2. RESULTS 

As mentioned above, six ecological regression models were built to determine various demographics of 

collisions in Yakima County. Table 1 displays the fidelity of all models by presenting the variance of the 

95% confidence interval associated with each model. This variance measure provides insight into the 

precision and reliability of the models. 

From Table 3-1, it can be observed that the models predicting the binary involvement rate of AI/AN 

(American Indian/Alaska Native) individuals in collisions have a smaller confidence interval range 

compared to those predicting household income demographics. Additionally, the confidence interval 

variance tends to increase as the type of collision becomes more specific, progressing from all collisions 

to injury collisions to fatal collisions. Despite this increase, all confidence intervals remain within an 

acceptable range, indicating the robustness and validity of the models. 

Table 3-1 Variance of Each Model’s 95% Confidence Interval 

 Collision Type 
 All Collisions Injury Collisions Fatal Collisions 
Household Income 0.00294 0.00538 0.0334 

AI/AN 0.000342 0.000585 0.00172 
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Table 3-2 below presents the odds ratios for the three household income models, while Table 3 shows 

the odds ratios for the three AI/AN binary models. These odds ratios are crucial for understanding the 

likelihood of different demographic groups being involved in collisions based on household income and 

AI/AN status. 

Table 3-2 Odds Ratios for Household Income Models 

 Collision Type 
Household Income 
Bracket 

All Collisions  
Odds Ratio 

Injury Collisions 
Odds Ratio 

Fatal Collisions  
Odds Ratio 

Intercept  0.160 0.0320 0.0000252 
<$10,000 0.999 1.004 1.012 
$10,000 to $14,999 1.005 1.004 1.011 
$15,000 to $19,999 1.001 0.999 0.971 
$20,000 to $24,999 1.001 1.001 1.031 
$25,000 to $29,999 1.000 0.999 1.014 
$30,000 to $34,999 1.001 1.001 1.010 
$35,000 to $39,999 1.002 1.003 0.986 
$40,000 to $44,999 0.999 0.998 0.982 
$45,000 to $49,999 0.998 0.999 1.011 
$50,000 to $59,999 0.999 1.000 1.010 
$60,000 to $74,999 0.998 0.999 1.010 
$75,000 to $99,999 0.997 0.995 0.996 
$100,000 to $124,999 1.003 1.004 1.009 
$125,000 to $149,999 1.002 1.003 1.006 
$150,000 to $199,999 0.998 0.999 0.995 
>$200,000 0.997 0.997 1.008 

 

The tables reveal that the odds ratios for all models are near one. This suggests that the primary factor 

influencing the demographics of collisions is the geographic distribution of collisions. However, these 

odds ratios still need to be applied to the collision data to accurately determine the true rate of collision 

for different demographics. The implications regarding household income are explored first. 

Figure 3-2 illustrates the income distributions for each collision type, alongside the income distribution 

for the entire county. This visual representation helps in comparing the income demographics involved 

in different types of collisions with the overall county income distribution. Table 4 complements this by 

showing both the percentage representation of each income stratum in collisions and the likelihood of 

each stratum being involved in different types of collisions. 
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Figure 3-2 Income distribution for each collision type 

From these results, several interesting trends can be extracted. Firstly, the demographic profile for all 

collisions and injury collisions tends to closely follow the general demographic profile of the population. 

However, there is a noticeable trend where lower-income households are slightly overrepresented in 

these types of collisions, while higher-income households are slightly underrepresented. This indicates 

that lower-income households are more frequently involved in all and injury collisions compared to their 

proportion in the population. 

On the other hand, fatal injuries do not follow these trends. Instead, fatal injuries appear to be 

distributed more evenly among different household income levels, rather than correlating with 

population size. However, although the percentage of fatal collisions is roughly the same for each 

demographic stratum, there is a slight decrease in the percentage as household income increases. This 

suggests that while household income does not significantly correlate with the likelihood of fatal 

collisions, it does correlate with the likelihood of all and injury collisions. In summary, all types of 

collisions tend to slightly overrepresent lower-income households and slightly underrepresent higher-

income households. 

Next, the percentage representation and collision likelihood for AI/AN individuals is examined. In Yakima 

County, AI/ANs make up 3.52% of the population. However, they account for 4.59% of all crashes, 5.04% 

of all injury collisions, and a striking 13.37% of all fatal collisions.  
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These findings indicate that AI/AN individuals are more likely to be involved in collisions compared to 

the overall population. For all categories, the likelihood of being in a crash is above 1, and this likelihood 

increases with the severity of the collision. The starkest disparity is observed in fatal collisions, where 

AI/ANs are nearly four times as likely to be killed in a fatal collision compared to the general population. 

This significant overrepresentation in fatal collisions highlights a critical area of concern that requires 

targeted interventions to improve road safety for AI/AN communities. 

3.3. CONCLUSIONS 

From the results of this study, several conclusions can be drawn. Firstly, this study showcases how 

ecological regression can be effectively utilized to estimate the true demographic profile of collision 

data. By linking crash locations with Census data, this method provides a detailed and accurate depiction 

of the demographics involved in collisions, thereby offering valuable insights into safety equity within 

Yakima County. 

One key finding is that the demographic rates of all collisions and injury collisions correlate closely with 

the overall demographics of the county. However, there is a noticeable trend of slight 

overrepresentation of lower-income individuals in these collision types compared to higher-income 

individuals. This suggests that lower-income households are more frequently involved in both all and 

injury collisions than their proportion in the population would suggest. 

Interestingly, this trend does not extend to fatal collisions. Instead, fatal collisions do not correlate with 

household income demographics in the same way. The distribution of fatal collisions is more evenly 

spread across different income brackets. Despite this even distribution, there remains a slight 

overrepresentation of lower-income households in fatal collisions. This highlights a critical safety equity 

concern, as lower-income individuals are disproportionately bearing the costs associated with traffic 

safety. 

The overrepresentation of lower-income households in all and injury collisions underscores the need for 

targeted interventions to improve road safety for these populations. This finding suggests that 

socioeconomic factors play a significant role in collision involvement, possibly due to differences in 

vehicle safety, driving conditions, or access to safe infrastructure. 

Additionally, the study’s results emphasize the importance of addressing safety equity in traffic safety 

policies and interventions. The fact that lower-income individuals are slightly more impacted by traffic 
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collisions indicates a disparity that needs to be addressed through targeted measures. This could include 

improving infrastructure in lower-income areas, implementing more stringent safety regulations, and 

providing better access to safe transportation options for all income groups. 

These results have several implications regarding Vision Zero and safety equity. Firstly, they highlight the 

severe safety equity issues faced by both rural and tribal communities. In this particular rural and tribal 

community, American Indian/Alaska Native (AI/AN) individuals are nearly 3.8 times as likely to be killed 

in a fatal collision. This alarming statistic aligns with findings from other studies conducted in the region. 

According to the Washington Traffic Safety Commission (2019), across the state of Washington, AI/AN 

individuals are 4.4 times as likely to be killed in a traffic collision. This consistent overrepresentation 

indicates a pressing need to focus on traffic safety within AI/AN communities, which are 

disproportionately affected by these safety equity issues. 

The disparities are even more pronounced for specific types of collisions. AI/AN individuals are 6.4 times 

as likely to be killed in a pedestrian collision, 5.8 times as likely to be killed when impairment is involved, 

4.2 times as likely to be killed in speeding-related collisions, and a staggering 8.8 times as likely to be 

killed when the collision involves unrestrained occupants (Washington Traffic Safety Commission 2019). 

These figures underscore the critical need for targeted interventions and improvements in traffic safety 

measures for AI/AN communities. To address these disparities and improve safety outcomes, various 

solutions can be framed around the 4 E’s: Engineering, Education, Enforcement, and Emergency 

Services. 

There are several potential avenues by which this work can be built upon to further the goals of safety 

equity. First and foremost, this research can be expanded to include other communities, both 

throughout the state of Washington and across the country. By broadening the scope, we can gain a 

more comprehensive understanding of the demographics involved in collisions, which will enhance our 

knowledge of the safety and equity concerns faced by diverse communities. This expansion will help to 

identify the most critical aspects of safety that must be addressed to achieve Vision Zero and realize 

restorative justice in safety. 

Furthermore, extending this study to encompass more tribal communities will provide invaluable 

insights into the specific safety equity issues these groups face. Given the unique challenges and 

disparities experienced by tribal communities, targeted research is essential to develop effective 

interventions. Beyond tribal communities, this methodology can also be applied to other historically 
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disadvantaged communities. By doing so, we can uncover the safety equity issues prevalent in various 

demographics and work towards addressing these systemic disparities. 

In addition to expanding the geographic and demographic scope of the study, there are several ways to 

improve the methodology itself. One significant improvement could involve the integration of more 

advanced statistical methods. While ecological regression has proven effective, methods utilizing 

machine learning and artificial intelligence show great promise for providing deeper explanatory insights 

into collision and traffic safety data. These advanced techniques can help identify complex patterns and 

relationships that might not be apparent through traditional statistical methods. 
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CHAPTER 4. AUXILLARY ROAD SURFACE CONDITION DETECTION TOOL FOR RITI 

COMMUNITY 

Road surface condition detection is a crucial element of transportation safety and infrastructure 

management. This process employs a variety of technologies and methodologies to identify and 

evaluate the condition of road surfaces, enabling transportation authorities to maintain safe and 

efficient roadways. The state of road surfaces directly affects vehicle safety, ride comfort, and overall 

transportation efficiency. Poor road conditions, such as potholes, cracks, and surface wear, can result in 

vehicle damage, accidents, and increased travel times. Additionally, adverse weather conditions like ice, 

snow, and water accumulation can further worsen these risks. Therefore, timely and accurate detection 

of road surface conditions is essential for preventing accidents by identifying hazardous conditions early, 

maintaining vehicle integrity by preventing wear and tear, enhancing ride comfort by ensuring smooth 

surfaces, optimizing travel efficiency by reducing travel time, and managing infrastructure proactively to 

extend the lifespan of roadways and reduce long-term costs. 

• Reducing the risk of collisions caused by poor road conditions to ensure road safety. 

• Extending the lifespan of road infrastructure by prioritizing maintenance and repair activities. 

• Preventing road closures and delays to enhance traffic flow and reduce congestion. 

• Enabling safer driving decisions by informing drivers about current road conditions. 

Current methodologies and technologies for detecting road surface conditions include: 

• Visual Inspection: This traditional approach involves trained personnel manually inspecting 

roads. Although straightforward, it is time-consuming, subjective, and limited in scope. 

• Sensor-Based Systems: Sensors such as accelerometers, laser scanners, and ultrasonic devices 

can be mounted on vehicles to detect road surface irregularities during travel. These systems 

offer continuous and objective data but can be expensive and require complex data analysis. 

• Image and Video Analysis: Advances in computer vision and machine learning have enabled the 

use of cameras to capture and analyze road surface images and videos. Algorithms can detect 

and classify defects, measure their dimensions, and assess their severity. 

• Thermal Imaging: Infrared cameras detect temperature variations on the road surface, 

indicating the presence of moisture, ice, or snow. This technology is particularly effective for 

monitoring road conditions in cold climates. 



 

20 
 

4.1. Methodology 

The implementation of AI (Artificial Intelligence) and ML (Machine Learning) algorithms is expected to 

significantly enhance the accuracy and efficiency of detecting road surface conditions. These 

technologies enable the processing of large datasets and the recognition of complex patterns. 

Additionally, the integration of IoT (Internet of Things) devices with road infrastructure can facilitate 

real-time monitoring and data collection, thereby improving the responsiveness of maintenance efforts. 

In our approach to classifying road surface conditions, we have identified four key features: two from 

image data and two from environmental data. The image-based features are intensity value and dark 

channel value. According to the Dark Channel Prior (DCP) theory, the dark channel value is usually low 

for most natural objects, including road surfaces, unless the object is white. However, in rainy or snowy 

conditions, where reflections or white pixels are common, the dark channel value may be higher. On the 

other hand, the intensity value is effective in differentiating between snowy and non-snowy conditions, 

as intensity values are higher in snowy environments. Figures 4-1 and 4-2, showing the intensity and 

dark channel histograms of road regions in Washington State captured by a surveillance camera, 

highlight the significant differences between roads with and without snow, which can be leveraged for 

classification. The addition of temperature and humidity sensors further improves the accuracy and 

reliability of this classification approach (Liu et al., 2023). 
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Figure 4-1 Image Intensity of Different Road Surface Conditions (Liu et al. 2023) 

 

 

Figure 4-2 Image Dark Channel of Different Road Surface Conditions (Liu et al. 2023) 

In addition to image-based features, we also incorporate two environmental features: temperature and 

humidity, measured by the DHT22 sensor. Temperature acts as an indicator of snowy conditions, while 
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humidity is a signal for rainy conditions. These features are straightforward, representative, and create 

an effective feature space for classification. The feature vector is represented as [I, K, T, H], where I 

stands for the median intensity, K denotes the median dark channel value, T represents temperature, 

and H indicates humidity. Using these four features, COCO SENSOR can classify road surface conditions 

into categories such as Icy, Snow, Dry, and Wet (Liu et al. 2023). Figure 4-3 illustrates the image 

processing results of the road surface condition detection tool. 

 

Figure 4-3 Image Processing Results of The Road Surface Conditions Detection (Liu et al. 2023) 
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Table 4-1 presents the classification results for road surface conditions, achieving accuracy levels of 96% 

for dry, 92% for wet, 90% for snowy, and 86% for icy surfaces. The higher accuracy for dry and wet 

conditions is due to their prevalence, providing abundant data for model training. In contrast, snowy 

and icy conditions are less common in Washington State and primarily occur during the winter, leading 

to limited data availability and slightly lower accuracy. Additionally, distinguishing between icy and 

snowy conditions can be challenging during data annotation, potentially causing confusion for the 

model. Despite these challenges, the overall accuracy of around 95% is satisfactory and supports the 

practical implementation of a weather condition warning system (Liu et al., 2023). 

Table 4-1. Road Surface Condition Test Results (Liu et al. 2023) 

Surface Condition Dry Wet Snowy Icy 

Dry 96% 1% 1% 2% 

Wet 1% 92% 4% 3% 

Snowy 3% 0% 90% 7% 

Icy 0% 5% 9% 86% 

 

4.2. Summary 

Detecting road surface conditions is crucial for ensuring safe and efficient transportation infrastructure. 

Technological advancements, including sensors, computer vision, and machine learning, have greatly 

enhanced the capability to detect and evaluate road conditions. Nevertheless, challenges such as data 

quality, environmental factors, and cost persist. Future advancements in AI, IoT, and autonomous 

vehicles are expected to drive further progress in this field, ultimately leading to safer and more reliable 

roadways. 
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CHAPTER 5. PEDESTRIAN DETECTION FROM MOUNTED SURVEILLANCE CAMERA TOOL FOR 

RITI COMMUNITIES 

5.1. Pedestrian Detection from Mounted Surveillance Cameras 

Pedestrians are a vital component of modern transportation systems, yet they face substantial risks. The 

latest National Household Transportation Survey (NHTS) indicates that walking accounts for 

approximately 11% of all recorded trips, making it the second most common mode of transportation 

(NHTS, 2004). Despite its popularity, walking in urban and densely populated areas presents significant 

dangers to pedestrian safety. According to the World Health Organization (WHO), pedestrians and 

bicyclists, collectively known as Vulnerable Road Users (VRUs), make up half of the global fatalities 

resulting from road crashes (WHO, 2023). Additionally, the Fatality Analysis Reporting System (FARS) 

shows a steady increase in pedestrian death rates in the United States, rising from 11% in 2002 to 17% 

in 2020. In 2020 alone, 6,516 pedestrians died in traffic incidents, averaging one death every 81 

minutes. The implementation of new technologies holds great promise for reducing severe injuries and 

fatalities on roads. Advances in sensor and AI technology are crucial in addressing these safety 

challenges. 

Extensive research has been conducted to improve road management, traffic regulation, and traffic 

monitoring using AI technologies. Cities and agencies are increasingly opting to use existing surveillance 

infrastructure rather than deploying new sensors, focusing on cost efficiency. This trend is driving the 

development of intelligent infrastructure, making significant strides in recognizing vehicles, roads, traffic 

patterns, and VRUs from surveillance camera feeds. As a result, the Intelligent Transportation Systems 

(ITS) community is increasingly concentrating on pedestrian detection technologies to enhance traffic 

safety and ensure equity. Pedestrian detection technologies within ITS are generally categorized into 

three main approaches: detection-based, regression-based, and density estimation techniques. 

A significant body of research has focused on enhancing road management, traffic regulation, and 

monitoring through AI technologies. Cities and agencies are increasingly prioritizing the use of existing 

surveillance infrastructure over the deployment of new sensors, aiming for cost efficiency. This trend is 

accelerating the development of intelligent infrastructure, achieving notable progress in recognizing 

vehicles, roads, traffic patterns, and Vulnerable Road Users (VRUs) from surveillance camera feeds. 

Consequently, the Intelligent Transportation Systems (ITS) community is emphasizing pedestrian 

detection technologies to improve traffic safety and ensure equity. These technologies are generally 
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classified into three main categories: detection-based approaches, regression-based approaches, and 

density estimation techniques. 

1. Detection-based Methods: These are key techniques for recognizing objects through feature 

extraction and classification, playing a crucial role in ITS. Recent advancements have produced 

sophisticated object detection models such as R-CNN, YOLO, and SSD, which have demonstrated 

exceptional performance in various applications, including traffic control, forecasting, and management 

(Zhang, 2021).  However, applying these detection-based approaches directly to pedestrian sensing 

presents challenges due to factors like occlusion, cluttered backgrounds, small object sizes, and motion 

blur. Unlike larger transportation elements like vehicles, VRUs are smaller and have fewer distinctive 

features, making them harder to distinguish from their surroundings (Voigt, 2021). 

2. Regression-based Methods: These methods leverage the overall characteristics of images, such as 

texture and gradient features, to identify pedestrians. Global characteristics are analyzed using various 

regression techniques, including linear regression and Gaussian mixture regression, to detect 

pedestrians. This approach is particularly adept at handling occlusions, small-sized objects, and blurred 

images. However, regression-based methods can face limitations due to changes in perspective and the 

challenge of accurately scaling 2D images, potentially leading to inaccuracies such as overestimations in 

areas of low pedestrian density and underestimations in densely populated areas. 

3. Density Estimation Methods: These methods have been widely used within the computer vision 

community for analyzing pedestrian traffic in densely populated environments. Unlike detection-based 

and regression-based techniques, density estimation employs convolutional neural networks (CNNs) to 

extract complex features and directly estimate crowd sizes using density maps (Liang, 2022). This 

approach has applications in public safety, the design of public spaces, and the intelligent monitoring of 

crowds. Despite their potential, incorporating density estimation methods into transportation contexts 

faces several challenges (Liang, 2022). Ensuring the safety of VRUs requires understanding their precise 

status and locations, which density estimation methods might not always capture effectively. VRUs tend 

to cluster in groups of varying densities within transportation environments, and current density 

estimation techniques often struggle with these variable densities and non-linear scale changes, 

complicating accurate crowd analysis (Sindagi, 2017). 

To achieve accurate and reliable pedestrian detection in transportation scenarios and address safety 

challenges, the research team proposes an advanced tool incorporating the SARLES algorithm that 
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processes surveillance camera videos of pedestrian crowds frame by frame. This tool can assist traffic 

agencies in sophisticated transportation management, safety issue monitoring, traffic operation, visual 

data collection, and more. 

5.2. Data Description 

The research team employed four datasets to train and evaluate the proposed tool in diverse 

application settings, including ShanghaiTech, UCF-QNRF, CityStreet, and a custom dataset compiled by 

the team. This custom dataset was created using live camera feeds from busy intersections and 

pedestrian zones in Tokyo. These locations were specifically chosen to capture a wide range of 

challenges, such as complex backgrounds, varied density distributions, and fluctuations in scale and 

perspective. The dataset comprises 500 annotated images, with 400 designated for training and 100 for 

testing. The rich variety of urban pedestrian scenarios in this dataset makes it an invaluable resource for 

refining and validating the tool's performance under real-world conditions. 

5.3. Pipeline 

Figure 5-1 illustrates the system pipeline, which comprises three main modules: the encoder-decoder 

module, the density map segmentation and clustering module, and the local patch refinement module.  

 

Figure 5-1 Architecture of Pedestrian Detection Framework 
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The system pipeline consists of three major modules, each playing a critical role in processing and 

refining pedestrian density maps. The first module, the encoder-decoder module, processes images of 

pedestrians in traffic scenarios by extracting multi-scale contextual features to generate an initial 

density map. This map is adequate for basic sensing tasks, such as counting the number of people in a 

crowd. However, it may lack the detailed information necessary for more advanced tasks, particularly 

those involving the precise localization of pedestrians within transportation settings. 

To address this, the second module, the density map segmentation and clustering module, refines the 

initial density map by segmenting it into smaller, localized patches based on their density features. This 

approach is designed to handle the challenges posed by sudden changes in scale and the wide variety of 

density distributions typically encountered in transportation environments. In these settings, 

pedestrians often gather in small, distinct clusters across different areas, leading to non-uniform scale 

changes and diverse density patterns. By segmenting the initial density map into patches that each 

represent a unique density feature, this module ensures consistency within each segment while 

maintaining overall diversity. These segmented patches are then processed through the local patch 

refinement module for further enhancement. 

The third module, the local patch refinement module, employs a CNN model with two fully-connected 

(FC) layers to classify the local patches into five distinct density levels, ranging from high to low. This 

classification process, combined with the segmentation strategy, provides the necessary input for an 

ensemble network dedicated to refining the patch density maps. By synthesizing these refined patches, 

the system can produce an accurate and detailed density map. This enhanced map is instrumental in 

detecting, sensing, and precisely locating pedestrians within various environments, significantly 

improving the effectiveness of pedestrian monitoring and safety measures in transportation contexts. 

Figure 5-2 shows the heatmap of intersection on a raw image generated by the tool. 
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Figure 5-2 Detection result overlaying estimated density heatmap with the raw image. 

5.4. Discussion 

This tool is an effective approach for identifying and sensing pedestrians within transportation settings, 

addressing common obstacles to reliable pedestrian detection in complex surroundings. These 

challenges include intricate occlusions, complicated backgrounds, variations in scale, heterogeneous 

distributions, shifts in perspective, and the presence of small objects. By adopting a scale-aware 

strategy, the method effectively captures features across multiple scales and processes representation 

information. This enhances its capability to detect and count pedestrians across a variety of distributions 

and complex scenarios, making it a reliable solution for monitoring pedestrian groups in challenging 

environments. 
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CHAPTER 6. CLASSIFIED VEHICLE VOLUME TOOL FOR RITI COMMUNITIES 

6.1. Background and goal  

Classified vehicle volume is a crucial traffic operational metric for transportation agencies. Large 

vehicles, such as trucks and buses, operate differently from passenger cars due to slower acceleration, 

inferior braking, and larger turning radii. Adjusting traffic flow parameters for these vehicles is essential 

for optimizing roadway capacity and enhancing safety. Additionally, the impact of vehicles on pavement 

deterioration varies significantly by vehicle type, mainly due to differences in axle configurations and 

total weight. Accurate vehicle classification data allow for precise estimation of pavement wear, leading 

to more cost-effective pavement design and maintenance strategies. Furthermore, understanding the 

composition of traffic flow, including the proportion of heavy vehicles, is vital for long-term 

transportation planning and infrastructure development. It influences decisions on roadway design, 

bridge structures, and investment in alternative transportation modes. 

Loop detectors are widely adopted due to their cost-effectiveness compared to other alternatives. 

Solutions like Weigh in Motion (WIM) systems and other classification stations can be difficult and costly 

to maintain due to their complexities, limiting their deployment and coverage of the entire highway 

system. Mounted traffic cameras face similar limitations. Dual-loop detectors, which use two closely 

spaced inductive loop sensors embedded in the pavement, detect vehicles based on disturbances in 

electromagnetic fields caused by the vehicle's metal components. This method facilitates length-based 

vehicle classification through four steps: vehicle detection, speed measurement, vehicle length 

measurement, and length-based classification. 

Firstly, when a vehicle passes over the first loop, it causes a disturbance in the electromagnetic field. As 

the vehicle continues, it passes over the second loop, creating another disturbance, marking the 

vehicle's passage over the dual-loop system. Secondly, the system measures the time taken for the 

vehicle to travel from the first to the second loop and calculates the speed by dividing the known 

distance between the loops by the elapsed travel time. Thirdly, based on the estimated speed and 

occupancy time on each loop, the system calculates the vehicle's length. The length is determined by 

considering the vehicle's speed and the time interval between the activation of the first loop and the 

deactivation of the second loop. Lastly, vehicles are classified into categories based on estimated lengths 

according to predefined length ranges. 
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In contrast, single loop detectors can measure vehicle count and lane occupancy but cannot measure 

vehicle lengths, thus are unable to provide classified vehicle volumes. However, single loop detectors 

are widely available on highway networks and offer an inexpensive alternative to expand classification 

coverage using existing count stations and traffic operation detectors. Therefore, estimating classified 

vehicle volumes using single-loop measurements is practically significant. The goal of this tool is to 

demonstrate how AI and ML can model classified vehicle volume using single loop detector data. This 

tool aims to extend the capabilities of existing detector stations, allowing urban traffic management 

systems to better monitor freight traffic within metropolitan areas by leveraging the high density of real-

time traffic monitoring stations, as illustrated in Figure 6-1. 

 
Figure 6-1 Demonstration of (a) safety analysis on DRIVE Net; (b) DRIVE Net data sources: (1) loop 
detector data; blue icons: sensor locations; (2) Verizon cellular data; colored circles: virtual sensor 
stations; (3) Bluetooth/Wi-Fi based vehicle count data; drops: sensor locations; and (4) INRIX road 
speed data. 

6.2. Data 

The loop detector data presented in Table 6-1 was sourced from DRIVE Net (www.uwdrive.net), a 

platform developed by the University of Washington’s STAR Lab. This platform ingests over 50 million 

lines of loop-detector data daily from the WSDOT sensing system, which has been deployed on Puget 

Sound area freeways since 2007. Data from two stations were specifically selected for the year 2023. 
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Table 6-1. Selected loop detector for example study 

Station code Location Lane No. (from right)* Dual-loop 
code 

Single-loop 
code 

005es17458 NB I-5 & NE 145th St. 1 _MN__T1 _MN___1 
005es18449 SB I-5 & 156th St. SW 1 _MS__T1 _MS___1 

* Lane 2 was not included because classified vehicle volume was not reported for the selected year. 

6.3. Pipeline 

In the WSDOT dual-loop detection system, vehicles are classified into four categories based on their 

lengths, as shown in Table 6-2: Bin 1 includes vehicles shorter than 20 ft, Bin 2 covers vehicles between 

20 ft and 42 ft, Bin 3 includes vehicles ranging from 42 ft to 72 ft, and Bin 4 comprises vehicles longer 

than 72 ft but shorter than 115 ft. These classifications are applied at loop detector stations, and the 

data retrieved from the online portal includes the classified vehicle volumes. Depending on the reader’s 

system configuration, the data available for download from these portals may be aggregated in intervals 

of 20 seconds, 30 seconds, or 5 minutes. 

Table 6-2. Length-based vehicle categories used by WSDOT. 

Classes Range of length Vehicle types 
Bin1 Less than 20 ft  Cars, pickups, and short single-unit trucks 
Bin2 From 20 ft to 42 ft  Cars and trucks pulling trailers, long single-unit trucks 
Bin3 From 42 ft to 72 ft  Combination trucks 
Bin4 From 72 ft to 115 ft Multi-trailer trucks 

 

It's important to note that loop data may have undergone quality control processes, such as imputing 

missing data for speed records. However, the data still requires pre-processing for our specific purposes. 

A common outlier in classified vehicle volume data is the reporting of negative values for several or all 

bins, likely due to sensor malfunctions, which have been addressed by prior quality control steps for 

speed, occupancy, and volume records. 

Once the data is properly pre-processed, the next step is to scope the AI/ML model and its training 

based on data availability and existing knowledge. The first consideration is which features to include. 

Since loop detector data can be available every 20 seconds, 30 seconds, or 5 minutes, the chosen model 

will have varying predictive capabilities. Temporal and spatial correlations are also crucial factors if the 

agency is interested in understanding how classified volumes correlate over time and with nearby 

stations. To incorporate these additional features, more complex neural network structures, such as 

recurrent neural networks and graph neural networks, may be needed. 
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In this document, the research team demonstrates a basic neural network that ingests features from the 

single-loop detector and predicts classified vehicle volume at the same time steps. This model does not 

account for any temporal or spatial relationships. As shown in Figure 6-3, the number of input elements 

corresponds to the available features: 3 if the loop detector data is reported every 5 minutes (speed, 

volume, occupancy), 30 if the data is reported every 30 seconds and the user wants to use speed, 

volume, and occupancy for the last five minutes, 45 if the data is reported every 20 seconds with the 

same requirements, or 18 if the data is reported every 30 seconds and the user wants to use these 

features for the last three minutes. The optimal number of hidden nodes is determined through trial-

and-error or existing knowledge. The configuration of the output neurons can be 1 if the volumes in the 

four bins are modeled separately, or 4 if the volumes are modeled together but given different weights 

when calculating errors. Before training, a train-test split is performed to ensure the model is evaluated 

on unseen data. 

 
Figure 6-2. Fully connected neural network structure. 

6.4. Results 

Classified vehicle volumes differ by lane and site. Moreover, volumes in Bin 2 to Bin 4 at the two 

selected sites exhibit significant daily variation. Consequently, different models are trained for each 

combination of bin, lane, and site, as shown in Table 6-3.  
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Table 6-3. Loop detector data aggregated every 5 mins 

timestamp speed volume occupancy Bin1 Bin2 Bin3 Bin4 
2023-01-01 00:00:00 60.0 25 2.2 25 1 1 0 
2023-01-01 00:05:00 60.0 22 1.8 22 0 0 0 
2023-01-01 00:10:00 60.0 17 1.4 20 0 0 0 
2023-01-01 00:15:00 60.0 33 2.6 30 0 0 0 
2023-01-01 00:20:00 60.0 47 3.6 47 0 0 0 

 

The model shows better performance for Bin 1 volume, as illustrated in Figure 6-4. 

 
Figure 6-3. Comparison between observed and estimated bin volumes at 15-minute level for detector of 

005es17458: _MN___1 on May 23, 2023. 
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Figure 6-4. Comparison between observed and estimated bin volumes at 15-minute level for detector of 

005es18449: _MS___1 on January 11, 2023. 

6.5. Discussion 

As previously mentioned, several factors affect the model’s transferability. Congested conditions can be 

isolated and analyzed separately, whereas this demonstration considered year-round data, most of 

which have low to moderate truck volumes. The pre-processing steps included basic quality control but 

did not incorporate other data sources to validate the aggregate dual loop detector measurements. In 

other studies, researchers use traffic cameras to further validate classified volumes. Optimal neural 

network structures may vary by bin, lane, site, and even time frame, as this model is driven by data 

rather than physics. This variability could limit the model's transferability. Therefore, agencies should 

understand their operational data and then decide how many models to build and for which sites. 
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