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SI* (MODERN METRIC) CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO SI UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
in inches 254 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km
AREA
in® square inches 645.2 square millimeters mm’
i square feet 0.093 square meters m’
yd? square yard 0.836 square meters m’
ac acres 0.405 hectares ha
mi square miles 2.59 square kilometers km?
VOLUME
floz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters It
cubic feet 0.028 cubic meters m’
yd® cubic yards 0.765 cubic meters m
NOTE: volumes greater than 1000 L shall be shown in m*
MASS
oz ounces 28.35 grams g
Ib pounds 0.454 kilograms kg
T short tons (2000 Ib) 0.907 megagrams (or "metric ton") Mg (or "t")
TEMPERATURE (exact degrees)
iF Fahrenheit 5 (F-32)/9 Celsius °c
or (F-32)/1.8
ILLUMINATION
fc foot-candles 10.76 lux Ix
fl foot-Lamberts 3.426 candela/m’ cd/m’
FORCE and PRESSURE or STRESS
Ibf poundforce 445 newtons N
Ibffin poundforce per square inch 6.89 kilopascals kPa
APPROXIMATE CONVERSIONS FROM S| UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi
AREA
mm’ square millimeters 0.0016 square inches in?
m’ square meters 10.764 square feet ft’
m’ square meters 1.195 square yards yd’
ha hectares 247 acres ac
km? square kilometers 0.386 square miles mi?
VOLUME
mL milliliters 0.034 fluid ounces floz
L liters 0.264 gallons gal
m’ cubic meters 35.314 cubic feet ft
m cubic meters 1.307 cubic yards ydz
MASS
g grams 0.035 ounces oz
kg kilograms 2.202 pounds b
Mg (or "t") megagrams (or "metric ton™) 1.103 short tons (2000 Ib) T
TEMPERATURE (exact degrees)
°c Celsius 1.8C+32 Fahrenheit i
ILLUMINATION
Ix lux 0.0929 foot-candles fc
cd/m?® candela/m’ 0.2919 foot-Lamberts fl
FORCE and PRESSURE or STRESS
N newtons 0.225 poundforce Ibf
kPa kilopascals 0.145 poundforce per square inch Ibf/in
*Sl is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.
(Revised March 2003)
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EXECUTIVE SUMMARY

Seasonal vehicular weight road restrictions are often used in Northern climates to mitigate the damage
that can occur in spring during thaw. Frost heave and related freeze/thaw processes in wet soil decrease
the compressive strength of highways. The location of the frozen/unfrozen interface is a primary
determinant for the physical stability of the overlying material. The Alaska Dept. of Transportation and
Public Facilities (ADOT&PF) generally apply weight restrictions during spring thaw until the thaw depth
reaches five feet. ADOT&PF maintains a system of Road Weather Information Stations (RWIS) that
record air and subsurface temperatures in order to know approximately when this occurs. There are
some limitations to relying on RWIS sites for determination of seasonal commercial vehicle weight
restrictions, such as cost and the associated limited number of sites over a large geographic area. A
numerical model was developed as a one-dimensional finite difference thermal energy balance that
accounts for both sensible and latent heat effects in a semi-saturated soil. The primary goal was to
accurately forecast the time when specific vertical locations thaw; specifically, 1 foot and 5 feet below
surface in this case. The tool is in the form of an Excel spreadsheet and requires only a single adjustable
parameter that represents a modified thermal diffusivity that accounts for latent heat effects. The
model is driven using air temperature data, and predicts the temperature at depth. The time resolution
of the model is the same as the input temperature data. The model was calibrated and evaluated using
archived RWIS data at five locations in Alaska with 1 hour resolution. The same value for apparent
thermal diffusivity was used at all sites. The average error at 1 foot depth was 4.78 days, and 8.5 days at
5 feet depth. The spreadsheet tool does not include any macros or external scripts, so can be used in
most other major spreadsheet programs such as Libreoffice Calc.



CHAPTER 1. INTRODUCTION

Seasonal vehicular weight road restrictions are often used in Northern climates to mitigate the damage
that can occur in spring during thaw. Frost heave and related freeze/thaw processes in wet soil decrease
the compressive strength of highways. Frozen ground contains ice in different forms ranging micron-
scale soil particle coatings to millimeter-scale ice inclusions. When thawing, the associated volume-
contraction of water leads to a decrease in mechanical strength of the highway. The overburden
pressure of vehicle traffic causes the soil skeleton to adapt. Concurrently, the excess pore pressure
eventually decreases as liquid drains; and the rate is a function of the solid material physical
characteristics and the thermal regime.

The location of the frozen/unfrozen interface is a primary determinant for the physical stability of the
overlying material. Its relative impermeability severely impedes relaxation of the excess pore water
pressure. Therefore, depth-of-thaw location is conventionally used as an indicator for a highway’s
seasonally changing mechanical strength. The thaw depth can be measured automatically in near-real
time using temperature depth probes (TDP), which are most often a string of thermistors embedded in a
rigid rod at strategically determined depth locations along the probe rod.

The Alaska Dept. of Transportation and Public Facilities (ADOT&PF) maintains a system of Road Weather
Information Stations (RWIS) along the primary highway system in Alaska. Each station includes an
Environmental Sensor Station (ESS) that measures and records atmospheric, surface/sub-surface, and
water/snow conditions at the site. A TDP is used to measure the depth of thaw. The TDPs in the Alaska
RWIS system have thermistors located at 3-inch intervals for the first foot below surface, and then 6-
inch intervals for an additional five feet of depth. Data collected by the ESS are collected by a remote
processing unit at the RWIS, and then transmitted every 6 hours via telephone (where available) or an
alternative wireless communication system. A subset of the collected ESS data is then made available in
graphical and tabular form on the web through the main AKDOT&PF portal.

There are some limitations and weaknesses in the current use of TDP measurements at RWIS sites for
determination of highway material strength and therefore seasonal commercial vehicle weight
restrictions. One limitation is the finite and few number of RWIS locations throughout the geographically
large Alaska highway system. Clearly the financial cost of installing and maintaining each station limits
the number and density of sites. Another limitation is the finite number and spacing between thermistor
sensors, which results in a somewhat low-resolution measurement of the actual frost depth. Finally,
equipment failure of TDPs results is not uncommon, yet difficult to repair timely if at all. There are also
weaknesses in using only depth of thaw as the determining factor for weight restrictions. Various
subgrade aggregate materials and natural soils both drain at different rates, as well as have differing
cohesive strengths as functions of water content and pore pressure.

1.1. Road Materials

The soil used under highways is typically carefully selected and engineered to provide a stable
foundation for the road structure. This subgrade is typically native soil upon which the road is built. It's
often compacted and sometimes treated to improve its properties. Ideal subgrade soils are well-draining
and have good bearing capacity.



Above the subgrade is the sub-base. This is typically gravel, crushed stone, and/or sand. The sub-base
helps with drainage and provides a stable platform for the base course. In areas where the native soil is
unsuitable, engineered fill may be used. This is specially selected or treated soil that meets specific
engineering requirements.

Key characteristics of soils used under highways include good drainage properties, high bearing capacity,
low frost susceptibility, minimal shrink-swell potential, and compactability to achieve desired density.
The exact type and composition of soil used can vary based on local availability, climate conditions,
traffic load expectations, and regional engineering practices.

1.2. RWIS System

The RWIS system, or Road Weather Information System, is a network of environmental sensor stations
used to collect and disseminate road weather data. It's a crucial tool for highway maintenance and
safety, especially in regions with challenging weather conditions. RWIS stations typically collect air
temperature, humidity, wind speed and direction, precipitation type and intensity, pavement
temperature, subsurface temperatures, and sometime pavement condition (e.g. wet, dry, icy). RWIS
systems play a crucial role in managing roads in areas prone to freezing, helping to prevent accidents
and optimize maintenance efforts. They provide real-time and forecast information that is valuable for
both immediate operational decisions and long-term planning. RWIS provides crucial data that helps
road maintenance teams make informed decisions about how to manage these conditions.

1.3. Project Goals

The numerical model developed in this project is a one-dimensional finite difference thermal energy
balance that accounts for both sensible and latent heat effects in a semi-saturated soil. The primary goal
was to accurately forecast the time when specific vertical locations thaw; specifically, 1 foot and 5 feet
below surface in this case.

The number of initial input parameters into the model were kept as small as possible. Initially the set
would include the physical properties of the underlying soil materials (thermal conductivity, heat
capacity, and density). Effective freezing and thawing indices (n-factors) will be determined using
archived RWIS data of temperature profiles over time. Effective surface temperatures can then be
matched to air temperatures for a top-surface boundary condition into the one-dimensional model.

Initial validation of the model involved comparison of the model forecasts with several years of archived
Alaska RWIS data from TDP measurement sites. We worked with Alaska DOT&PF for acquisition of the
data, and to gain an understanding of the conditions at each of the RWIS locations. The model validation
metrics were deviation between forecast and recorded temperatures with focus on temperatures near
freeze/thaw. Model design iteration included reducing the model input requirements such that it can be
modified and implemented efficiently for use in a wide range of locations. The ulterior motive of this
step is to be applicable to locations far from any current RWIS installations. After the development,
validation, and iteration steps, the forecast system wasdesigned for facile integration with the current
Alaska RWIS data system.



CHAPTER 2. LITERATURE REVIEW

One-dimensional finite difference models (FDMs) have become a cornerstone for simulating the freezing
process in soils. FDMs have been widely employed to simulate one-dimensional freezing processes in
soils due to their relative simplicity and computational efficiency. This review explores the strengths and
limitations of FDMs in this context, highlighting key considerations for model development and
application. This review examines key developments and applications of these models in geotechnical
engineering and permafrost studies.

Heat transfer in soil freezing is governed by the heat equation, incorporating latent heat release during
water-to-ice phase change. FDMs discretize the spatial domain (usually depth) and time domain,
approximating the temperature distribution within the soil profile. Early models often assumed a
constant soil composition and a single freezing point for all water (Jumikis, 1977). However,
advancements incorporated the dependence of unfrozen water content and thermal properties on
temperature (Kozlowski, 2001; Riseborough & Smith, 1985). This improved the accuracy of frost depth
prediction, a crucial parameter in geotechnical engineering.

The complexity of FDMs for soil freezing can vary. Simpler models may focus solely on heat transfer,
while more sophisticated approaches couple heat and mass transfer to account for water movement
during freezing (Comes-Pintaux & Nguyen-Lamba, 1986). The selection depends on the specific problem
being addressed and the desired level of detail.

Several factors influence the accuracy and applicability of FDMs. Mesh resolution (spatial and temporal
discretization) is critical, as finer meshes lead to more accurate results but require greater
computational resources. Furthermore, reliable soil property data, including thermal conductivity,
volumetric heat capacity, and the relationship between unfrozen water content and temperature, are
essential for accurate simulations (Goodrich, 1978) (Harlan, 1973).

Validation of FDM simulations is crucial. Comparisons with analytical solutions (for simple cases) or field
measurements provide confidence in the model's performance. FDMs have been successfully applied to
various problems, including predicting frost depth in foundations, evaluating the effectiveness of ground
freezing techniques, and understanding the impact of climate change on permafrost. Early work by
Harlan (1973) established a foundation for modeling coupled heat and mass transfer in freezing soils
using finite difference methods. His model incorporated both conductive and convective heat transfer,
as well as moisture migration driven by temperature gradients. Nixon (1975) considered the role of
convective heat transport in the thawing of frozen soil. He concluded that for a wide range of
conditions, the effect is minor and does not play a significant role in determining the rate of thaw.

Subsequent research focused on improving the representation of soil properties and phase change
dynamics. Jame & Norum (1980) developed a model that accounted for the variation of unfrozen water
content with temperature, a crucial factor in accurately simulating frost heave and thaw settlement.
Konrad & Morgenstern (1984) introduced the segregation potential concept to model frost heave, which
was later incorporated into finite difference schemes by various researchers. This approach allowed for
more accurate prediction of frost heave in frost-susceptible soils.

Recent advancements have focused on incorporating more complex phenomena and improving
numerical stability. Hansson, et al. (2004) developed a model that accounts for salt transport and its



effects on freezing point depression, which is particularly relevant for coastal and saline soils. Dall-
Amico, et al. (2011) presented a robust numerical scheme for solving the coupled heat and water flow
equations in freezing soils, addressing issues of convergence and stability in previous models. Current
research trends include the integration of finite difference models with other numerical techniques,
such as finite element methods, to handle more complex geometries and multidimensional problems.

2.1. Latent Heat of Fusion

The latent heat of fusion is a critical component in finite difference models of soil freezing, as it
represents the energy required for phase change between water and ice. The apparent heat capacity
method is one of the most common approaches. The latent heat is incorporated into an "apparent"” or
"effective" heat capacity of the soil-water-ice system. The heat capacity is treated as a function of
temperature, with a large spike around the freezing point to represent the latent heat effect. This
method, used by researchers like Hansson et al. (2004), allows for a smooth transition between frozen
and unfrozen states.

Some models, like those based on Harlan's (1973) work, treat the latent heat as a source or sink term in
the heat transfer equation. As freezing occurs, the latent heat is released (acting as a heat source), and
during thawing, it's absorbed (acting as a heat sink).

This enthalpy formulation, employed by Dall'Amico et al. (2011), uses enthalpy as the primary variable
instead of temperature. The enthalpy includes both sensible and latent heat, allowing for a more natural
incorporation of phase change effects.

In models that explicitly track the freeze-thaw interface, like Nixon's (1975), the latent heat is accounted
for as a boundary condition at the moving frost front. This approach is particularly useful for sharp
freeze-thaw interfaces. Many models incorporate the relationship between unfrozen water content and
temperature. This indirectly accounts for latent heat effects, as the gradual release of latent heat is
reflected in the changing unfrozen water content over a range of sub-zero temperatures.

The choice of method often depends on the specific problem, soil characteristics, and desired balance
between computational efficiency and accuracy. More recent models tend to use combinations of these
approaches to better represent the complex thermodynamics of freezing soils.



CHAPTER 3. DATA AND METHODS

Determining the physical properties of soil is crucial for accurate finite difference modeling of freezing
processes. Models typically handle soil properties in a variety of ways. Many models rely on
experimentally determined soil properties as input parameters. These may include thermal conductivity,
heat capacity, hydraulic conductivity, porosity, bulk density and particle size distribution. Researchers
often conduct laboratory tests on soil samples to obtain these properties before running simulations.

Some properties, particularly thermal properties, are often represented as functions of temperature and
phase composition. For example, thermal conductivity is often modeled using weighted averages of soil
components (solid particles, water, ice, air) based on volume fractions, which change with temperature.
Heat capacity can be similarly calculated using mixture models, accounting for changing proportions of
water and ice.

The critical relationship between temperature and unfrozen water content is typically determined
experimentally for specific soil types. It's often represented by empirical functions (i.e. unfrozen water
curve) or lookup tables in the models.

Some models use parameterization schemes to estimate properties based on soil classification (e.g.,
sand, silt, clay percentages) and other basic soil data. Often, initial estimates of soil properties are
refined through model calibration against field or laboratory data, improving the accuracy of
simulations.

It's worth noting that the accuracy of many models heavily depends on the quality and appropriateness
of the soil property inputs. Sensitivity analyses are often performed to understand how uncertainties in
soil properties affect model outcomes. It was beyond the scope of this project to obtain physical
samples and measure physical properties at the sites being studied. Furthermore, it aligns with the
overall project goal to keep input parameters to a minimum. Therefore, the initial approach, which was
also the final product, required only the thermal diffusivity of the material

a=——
P Cp

Furthermore, this value remained the same at all sites investigated. This was not unexpected since the
material physical properties down to 5 feet are very similar at all locations.

3.1. Numerical Methods

This model solves the unsteady, one-dimensional heat conduction equation

oT 0°T

— = —
ot dz?

by the finite difference method. The latent heat of fusion accounted for using the apparent heat

capacity method since tracking the location of the freezing interface would be very difficult with the

course resolution and fixed grid of this model.

The entire model is contained in a single Microsoft Excel spreadsheet and contains no macros or other
external functions and methods. The only required temperature input into the model is the RWIS



measured air temperature as a function of time. Using that value, the temperature at the following
depths (in feet) are calculated: 0.25, 0.5. 0.75, 1.0,1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5.

The upper most depths were able to be adequately determined without needing to account for latent
heat effects. Down to the 1.0 feet depth, the temperature can be determined by an analytic solution of
one-dimensional, time-dependent conduction equation with constant physical properties.

%zem(zjﬁ)

where T is the temperate at the cell directly above it, and T; is the temperature of the same cell in the
time step before current. Below this depth, the thermal diffusivity is determined by a conditional test
using the temperature relative to the freezing point.

3.2. RWIS Data

Archived surface and sub-surface temperature data were acquired through the Alaska Department of
Transportation and Public Facilities Road Weather Information System website at
https://roadweather.alaska.gov/gis.. For all five of the sites used in this study, six years of historical
temperature data was acquired. This data included air temperature and ground temperature at all the
depths given above. The input to the model is the air temperature, and the remaining ground
temperatures were used for development, adjustment and tuning of the model.

3.3. Thermal Model Spreadsheet Tool

This section is a brief visual overview of what the thermal model spreadsheet tool looks like to the end
user. Note that the actual sheet may have up to 10,000 columns depending on the time resolution and
duration of the data. Time increments of 1.0 hours were used in the development of this tool. Different
time increments can be entered for the air temperature, however, and it can be either regularly or
irregularly spaced.

Only the left-most part of a single tab of the spreadsheet is usually shown in most of the figures below.
Figure 1 shows an overview of what the Excel spreadsheet looks to the user. One visual effect added to
the cell data background was color coding from blue to red (cold to warm). For model validation, the
actual RWIS data at all depths is included in the data block below the model forecasts. The top block of
cell is the model forecast, and the block below that is the actual measure temperature. The top scatter
plot is the temperature at 1.0 feet showing both the model and actual measurement, and the plot below
that is the same for 5.0 feet depth.
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Figure 1 Overview of the model interface

Figure 2 shown below is a closer view of the model data block using background color coding to aid in
quick visualization of where the freezing interface is located. Red colors are above freezing, and blue
colors are below freezing. Each column represents a time difference of 1.0 hours, and the rows are at
the depths given earlier (most are 0.5-foot increments). In this figure, a general idea of the descending
freezing front can be seen in the white band.
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Figure 2 Closer view of the data blocks with background color coding

Figure 3 simply illustrates a user interfacing with the model. User adjustable parameters are in the upper
left. There are a few cells below those that were used for development and tuning of the model and can
be hidden or even completely removed by the user if desired. Time data are entered in a single row of
the model in any resolution available to or desired by the user.
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Figure 3 lllustration of a user interfacing with the model

Figure 4 below is a close-up section view of the temperature plotted as a function of time at the 1.0
depth (top) and 5-foot depth (bottom). The orange line is the simulated at-depth temperature, and the
blue line is the actual temperature recorded from RWIS. The straight green line at 32 degrees Fahrenheit
shows the bulk freezing temperature. The road material at 1-foot and 5-foot depth does not contain any
appreciable unfrozen water below that temperature, and there is a negligible freezing point depression.
Therefore, the green line is a fairly accurate location of the interface between unfrozen and frozen
material. The red arrows nearer the right side of each plot show the predicted and actual time of thaw,
which are nearly identical in this simulation.
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Figure 4 Scatter plots of the 1 foot and 5 foot depths, including the actual and model predictions
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CHAPTER 4. FINDINGS

The model was calibrated and applied at four Alaska locations. In order to fully evaluate the predictive
capability of the model, sufficient archived air, surface and subsurface temperature data are necessary
Therefore, some sites (e.g. DOT Lake) had more comparison than others (e.g. Nenana Hills).

Each location was put into a separate copy of the master spreadsheet with tabs typically in one-year

intervals due to the size constraint of Excel columns. The four sites used in this analysis are shows in the
figure below:

e NEN- Parks Highway @ Nenana Hills MP 325.4

e DOT-Alaska Highway @ Dot Lake MP 1355.2

e CLR- Steese Highway @ Cleary Summit MP 20.9
e BIR- Richardson Highway @ Birch Lake MP 307.2
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Figure 5 Map of the Interior of Alaska showing the four FWIS sites used in this analysis

Although the model predicts temperatures at all the depths discussed in section 4.1, the primary focus

was on thaw at depths of 1.0 and 5.0 feet. Table 1 below summarizes the model performance for each
of the sites analyzed.
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Table 1 Summary of the predicted and actual dates of thaw for each site analyzed

Site 1 ft (model) 1ft (actual) Error [d] 5 ft (model) 5 ft (actual) Error [d]
NEN | 4/12/1817.00 | 4/12/1822:00 | 0.21 5/6/18 5:00 5/12/18 20:00 | 6.63
DOT | 4/8/15 19:00 4/14/15 18:00 5.96 5/6/15 11:00 5/16/15 3:00 9.67
3/28/16 8:00 3/31/16 7:00 2.96 4/21/16 5:00 5/5/16 18:00 14.54
4/15/2021:00 | 4/20/2019:00 | 4.92 5/6/20 1:00 5/14/20 6:00 8.21
4/19/21 16:00 4/20/21 17:00 1.04 5/13/2119:00 | 5/12/21 1:00 1.75
4/25/22 10:00 | 4/25/22 8:00 0.08 5/17/22 4:00 5/21/22 5:00 4.04
BIR | 3/27/15 13:00 4/3/15 22:00 7.375 N/A N/A N/A
3/29/16 16:00 | 3/28/1621:00 | 0.792 4/22/16 22:00 | 4/23/16 9:00 0.458
4/5/17 20:00 4/5/17 20:00 0 4/30/17 18:00 | 5/3/17 9:00 2.63
4/11/18 18:00 | 4/11/1817:00 | 0.042 5/3/18 14:00 5/6/18 20:00 3.25
CLR | 3/28/1517:00 | 4/19/1520:00 | 22.13 7/4/15 1:00 N/A N/A
4/6/16 15:00 4/11/16 21:00 | 5.25 4/22/16 15:00 | 5/13/16 14:00 | 20.96
4/12/17 11:00 | 4/23/17 1:00 10.58 5/7/17 16:00 5/20/17 22:00 | 13.25
4/26/18 10:00 | 4/23/1822:00 | 2.5 5/14/18 21:00 | 5/25/18 20:00 | 10.96
4/15/2022:00 | 4/23/2020:00 | 7.92 5/11/209:00 5/25/2012:00 | 14.13

There is a row in the table for each year that there was sufficient data to do a comparison the model
performance. Occasionally there were data gaps around the time of thaw that precluded a complete
comparison; those are indicated with N/A in the table. The model time step used was one hour since
that corresponds with the RWIS data resolution. Therefore, the date and time of thaw for both the
model and the actual have an uncertainty of about 1 hour. As discussed in Section 4.3, the model can
accommodate any time step and depends only on the resolution of the air temperature driving the
simulation. The absolute difference between the model predictions and the actual thaw are shown in
the Error column in units of days.

A summary of basic statistics of the error was calculated using all sites and all years, weighing each
instance equally. A summary of these statistics is shown in Table 2 below.

Table 2 Statistic summary of the error

1 5
foot | foot
error | error
[d] [d]
Minimum 0 0.46
Maximum 22.13 | 20.96
Average 4.78 | 8.50

Predictions for the Cleary Summit (CLR) on the Steese highway had substantially more error than the
other four sites; approximately double for all five years analyzed. Since CLR had one of the most
comprehensive data sets (five years), the discrepancies of that site alone weigh more heavily in the
statistics. Insets showing time of thaw at CLR are shown in Figure 5 below. It appears there is a larger
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latent heat effect at this location and an adjustment of the thermal diffusivity would yield closer
agreement, but the investigation is continuing as part of the larger graduate student’s research project.

e

m—

W/M%

Figure 6 Model (yellow) and actual (blue) during thaw at 1 and 5 feet
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CHAPTER 5. CONCLUSIONS

A numerical tool was developed that can fairly accurately predict the time of thaw at depth below a
roadway using only surface air temperature data. The tool comes as an Excel spreadsheet and contains
no macros or other external programs/scripts, so it can easily be used in many other major spreadsheet
programs such as the free open-source LibreOffice Calc without modification. The uncertainty in the
model is the same as the time resolution of the air temperature data driving the model. There is a single
adjustable parameter that represents an effective thermal diffusivity that accounts for latent heat
effects. A single value for this parameter was used in the analysis of CHAPTER 5, but an end user can
easily adjust this value for a different site if there is some archived data available to validate it. We
found a single value worked fairly well for the five sites analyzed because the subsurface material is
likely similar at all sites. The average error at a depth of 1 foot was 4.78 days, and the average error at 5
feet was 8.5 days.
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