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EXECUTIVE SUMMARY

RITI communities often do not have the capability and resources to sufficiently solve roadway safety
problems. In this case, several challenges are often encountered when addressing transportation safety
issues in RITI communities, including: (1) crashes are often randomly distributed on local and rural roads
in RITI areas; (2) there is a critical need for data-driven safety assessment methods for RITI communities;
(3) RITI communities often lack safety data tools for data management and visualization to support
decision making. A survey conducted by the National Association of Counties (NACo) in 2009 revealed
that only 42 percent of counties surveyed maintained a database that tracks the number and types of
crashes on their rural roads and less than half of the respondents had conducted a road safety audit.
Existing databases are still incomplete for most of the RITI communities. It is necessary to develop safety
data platform and assessment methods specifically for RITI communities for traffic safety data
management and analysis.

In our Year 1 and Year 2 CSET projects, a baseline data platform, i.e., Safety Net, was developed by
integrating the safety related data collected from the RITI communities in Washington State (Wang et
al., 2019). This platform is capable of visualizing the accidents records on the map. The Year 3 project
aimed to further develop the safety data platform by developing crash data analysis and visualization
functions.

In addition, this project developed various roadway safety assessment methods to provide safety
performance estimation, including historical accident data averages, predictions based on statistical and
machine learning (ML) models, etc. This project investigated the potential influential factors, such as
roadway geometric characteristics, environmental conditions, human behaviors, and traffic conditions
on the injury severity of crashes occurred on rural roads. Four models, including ordered probit (OP),
multinomial logit (MNL), artificial neural network (ANN) and random forest (RF), were trained, tested,
and validated using five years of Washington State crash records from 2013 to 2017. It was found that
the two Machine Learning models (ANN and RF) performed better than the two statistical models (OP
and MNL), and the RF model had the best performance in predicting crash injury severities. The results
also showed that variables such as grade percentage, degrees of curvature, shoulder width, driver’s
gender, roadway width, head on crash, pedestrian/cyclist involved, young driver, truck involved, etc.
have significant impact on the crash injury severity on low-volume rural roads.

Beside roadway safety assessment methods, this project investigated the safety countermeasures
selection and recommendation methods for RITI communities. Safety countermeasures are developed
and implemented aiming at reducing crash frequency and accidents severity on road systems.
Concerning the RITI communities, this is even more critical. Specifically, the research team reached out
to RITI communities and established a formal research partnership with Yakama Nation. By working with
the traffic engineers and planners Yakama Nation DNR Engineering Department, the research team
conducted research on safety countermeasures analysis and recommendation for RITI communities.



CHAPTER 1. INTRODUCTION

1.1. Project Background

Road traffic crashes often cause property damage, injuries, and even fatalities. They also account for
25% of congestion in road networks (Cambridge Systematics Inc., 2005). According to the Federal
Highway Administration (FHWA), while only 19% of the country’s population lives in rural areas, about
54% of the traffic crashes occurred on rural roads (Federal Highway Administration, 2012). This indicates
a clear disparity regarding transportation safety in rural areas of the country. According to the National
Highway Traffic Safety Administration (NHTSA), from 2007 to 2016, the fatality rate in rural roads was
more than two times higher than in urban areas (NHTSA, 2018). This discrepancy in fatalities reveals the
urgency to improve the roadway safety conditions in the rural areas in order to achieve transportation
equity.

To meet the transportation safety needs of RITI communities, Washington State also faced a lot of
challenges. Twenty-two percent of the state’s major rural locally and state-maintained roads are in poor
condition. An additional 52 percent of rural roads are in mediocre or fair condition. The fatality rate on
Washington’s rural non-Interstate roads was 1.76 fatalities per 100 million vehicle miles of travel in
2013, nearly three and a half times higher than the 0.52 fatality rate on all other roads and highways in
the state. According to the data from Washington State Strategic Highway Safety Plan 2016, more than
half of impairment-involved fatalities occurred in rural areas during 2012-2014, and unrestrained
occupants are also more likely to die in rural road crashes. It is obvious that rural roadway safety has
become an important social issue influencing the sustainable development of RITI communities in
Washington State.

1.2. Problem Statement

RITI communities often do not have the capability and resources to sufficiently solve roadway safety
problems. In this case, several challenges are often encountered when addressing transportation safety
issues in RITI communities, including: (1) crashes are often randomly distributed on local and rural roads
in RITI areas; (2) there is a critical need for data-driven safety assessment methods for RITI communities;
(3) RITI communities often lack safety data tools for data management and visualization to support
decision making. A survey conducted by the National Association of Counties (NACo) in 2009 revealed
that only 42 percent of counties surveyed maintained a database that tracks the number and types of
crashes on their rural roads and less than half of the respondents had conducted a road safety audit.
Existing databases are still incomplete for most of the RITI communities. It is necessary to develop safety
data platform and assessment methods specifically for RITI communities for traffic safety data
management and analysis.
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Figure 1.1 Structure of the roadway safety management system for RITI communities

Due to the importance of reducing the social and economic costs associated with traffic crashes, most
transportation agencies apply some type of roadway safety management system, designed to improve
the roadway safety performance. To build up the roadway safety management system, two critical
components, i.e., the baseline data and safety assessment framework, are needed (shown in Figure 1.1).
In the Year 1 CSET project, a baseline data platform was developed by integrating the safety related data
collected from the RITI communities in Washington State. The safety assessment framework is the
cornerstone of the roadway safety management system. Due to different RITI communities having
different safety data sources, a general safety assessment method may not be adapted to all the RITI
communities. To provide context-sensitive solutions, the roadway safety cultural factors, such as local
driving habits and training level, will be considered. All the safety assessment methods form a data-
driven safety assessment framework which can enable effective roadway safety management systems at
all levels in RITI communities, and aid in roadway design and implementation appropriate
countermeasures to mitigate rural crash severities and risks.

1.3. Research Objective

In our Year 1 and Year 2 CSET projects, a baseline data platform, i.e., Safety Net, was developed by
integrating the safety related data collected from the RITI communities in Washington State (Wang et
al., 2019). This platform is capable of visualizing the accidents records on the map. The Year 3 project
aimed to further develop the safety data platform by developing crash data analysis and visualization
functions. In addition, this project developed various roadway safety assessment methods to provide
safety performance estimation, including historical accident data averages, predictions based on
statistical and machine learning (ML) models, etc. Beside roadway safety assessment methods, this
project investigated the safety countermeasures selection and recommendation methods for RITI
communities.



CHAPTER 2. LITERATURE REVIEW

2.1. Roadway Safety Assessment Methods

Over the years, there have been many studies about crash injury severity modeling and analysis, with
the objective to better understand the risk factors that influence the crash injury severities and help
transportation agencies make decisions to improve the roadway safety conditions. Crash injury
severities are usually classified into several categories by law enforcement. According to the KABCO
crash injury scale developed by the National Safety Council, the crash injury severities include five
categories: fatal (K), incapacitating injury (A), non-incapacitating injury (B), possible injury (C), and
property damage only (PDO). Researchers have developed models with crash injury severities as the
dependent variable and various contributing factors as the explanatory variables. Such contributing
factors usually include roadway geometric characteristics (e.g., number of lanes and lane width,
shoulder width and type, curve rate, grade, road surface type, median type, shoulder type), human
behavior factors with respect to drivers, occupants, and pedestrians (e.g., driver and occupant
characteristics such as gender and age, DUI, speeding, seat belt use, distractions), environmental
conditions (e.g., adverse weather conditions such as fog, snow, ice, heavy rain, and lighting conditions),
traffic conditions, and vehicle characteristics.

In the early stage of crash injury severity studies, researchers mostly used statistical models such as
Logistic regression to investigate the risk factors related to crash injury severities. With the massive and
complicated crash data being collected nowadays, it is difficult for statistical models to accurately
capture the impacts of various risk factors to injury severity. Recently, the advancements in computing
technology in the fields of artificial intelligence (Al), especially machine learning (ML), have allowed for
more efficient and effective extraction of information from extensive traffic safety datasets.
Consequently, researchers have been very active in applying ML technologies towards crash injury
severity prediction. With an abundance of data available, the ML approaches could capture relationships
among contributing factors and crash injury levels that traditional statistical models are not able to, and
thus improve the accuracy of the prediction results.

2.2. Crash Injury Analysis on Rural Roads

Many researchers have applied the aforementioned statistical and machine learning methods for injury
severity analysis of crashes occurred on rural roads. Vogt and Bared (1998) built negative binomial
models to investigate relationships between crash injury and explainable variables including traffic,
horizontal and vertical alignments, lane and shoulder widths, and number of driveways, etc. Karlaftis
and Golias (2002) used tree-based regression and found that roadway geometric design and pavement
conditions are two most important factors for crashes that occurred on rural two-lane and multilane
roads. Chen et al. (2016) used the ordered logit model for crash injury severities analysis on rural non-
interstate roadway, and the results showed that factors such as seatbelt use, driver age and gender,
DUI, wet road surface, crash location, collision type, vehicle type, number of vehicles and maximum
vehicle damage, have significant impacts on driver injury severity. A study by Ye and Lord (2014)
compared MNL, OP, and mixed logit models on crash injury severity analysis on rural two-way highways.
It was found that OP model has the least requirement on sample size comparing to the other two
methods. Lin et al. (2020) developed RF models for the driver crash injury severity prediction, and it was



found that road class, speed limit, and the first harmful event are the most important factors on the
injury severity of teen driver involved crashes occurred on rural roads in West Texas.

Only a few studies were found in the literature that specifically analyzed traffic crashes on low-volume
rural roads. Souleyrette et al. (2010) used the OP model to study the influential factors for crashes on
rural roads with 400 Annual Average Daily Traffic (AADT) or less in lowa. Several factors were identified
to increase the severity of crashes on low-volume rural roads, such as paved surfaces, spring/summer
months, weekends, impaired driving, speeding, younger or older driver involvement, etc. Prato et al.
(2014) studied crashes that occurred on low-volume facilities in rural area in Denmark between 2007
and 2011. The authors applied the generalized ordered logit model for crash injury severity analysis. The
results indicated that factors including alcohol, seatbelt usage, involvement of vulnerable road users
such as pedestrian and cyclists, speed limits, etc. to be significantly associated with crash injury severity
on low-volume rural roads.

2.3. Pedestrian Safety Assessment Methods

There have been many different studies related to pedestrian safety. This has been a subject of study for
many decades. M Snyder conducted a study in 1971 to identify the causes and countermeasures of
pedestrian collisions in Maryland. For this study over 2000 pedestrian collisions were analyzed, mostly
focusing on pedestrian behavior. It was found that over 50% of crashes were caused by some form of
pedestrians entering the roadway inappropriately (Snyder and Knoblauch, 1971). In 1983, Hall
conducted a study to measure rural pedestrian safety in New Mexico. The study described the
discrepancy between rural pedestrian fatalities and urban fatalities, with the results for each region
being 49% and 34% respectively (Hall, 1983). These studies highlight the importance of pedestrian safety
studies and some of the initial methodologies aimed at understanding them.

More recently, an NCHRP study was conducted for the National Academies of Sciences, Engineering, and
Medicine that investigated the correlation between site-specific characteristics and pedestrian
collisions. They found that site-specific characteristics increased the likelihood of pedestrian collisions
(National Academy of Sciences, 2008). A similar study was conducted in Bangladesh. This study also
found that specific characteristics precipitate pedestrian collisions in the city of Dhaka (Bhuiyan, 2019).
Additionally, several studies were conducted utilizing different modeling techniques to assess pedestrian
safety. Zajac created an ordered probit model that evaluated roadway features that are prevalent in
pedestrian collisions (Zajac and Ivan, 2002). This model showed different characteristics that influence
pedestrian collisions that are more appropriate for a rural setting than the other above studies. Chen
conducted a similar study in 2019, which used the alternative method of a mixed logit model to predict
rural pedestrian collisions (Chen and Fan, 2019). Baireddy conducted a study in rural lllinois that
identified several factors that increase the pedestrian collision likelihood using multiple correspondence
analysis (Baireddy et al., 2018). These previous studies hold several implications for this study. Firstly,
they show that using roadway characteristics as a method to predict pedestrian collisions is a valid and
well-documented methodology. Secondly, it highlights the research gaps filled by this paper where the
severity of pedestrian collisions is not considered in any of these previous studies.

It can be noted that most of the literature relies on traditional statistical modeling approaches to
address pedestrian safety issues. Nevertheless, with the recent advent of Machine Learning, some
researchers have started applying these latest approaches to this type of problem. In 2018, Ding



developed a study to examine built environmental effects on the frequency of crashes involving
automobiles and pedestrians by applying Multiple Additive Poisson Regression Trees (MAPRT), a
Machine Learning approach based on decision trees. Using data from Seattle, Washington, the study
helped to detect non-linear relationships between the built environment and pedestrian collisions
frequency, confronting the linearity assumption frequently used in studies that use statistical models
(Ding et al., 2018). Das applied in 2020 distinct Machine Learning techniques to classify pedestrian
collision types (intended vs. untended, pedestrian at fault vs. motorist at fault) using pedestrian crashing
data from two locations in Texas (Das et al., 2020). These reference studies were essential for the
development of our methodology applied specifically to fatal collisions, an unprecedented approach so
far.



CHAPTER 3. SAFETY DATA MANAGEMENT AND VISUALIZATION PLATFORM

In our Year 1 and Year 2 CSET projects, a baseline data platform, Safety Net, was developed by
integrating the safety related data collected from the RITI communities in Washington State. This
platform is capable of visualizing the accidents records on the map. This project further developed the
safety data platform by developing crash data analysis and visualization functions. The safety platform
includes various visualization functions to support decision making, such as visualization of crash records
in roadway network map based on filtering of crash attributes and roadway features, visualization of
roadway segment safety performance based on the calculated safety performance indices, rural
roadway speeding map, hotspot identification for pedestrian and vehicles, graphs and tables of crash

statistics that support crash reporting, etc. Specifically, the following visualization functions had been
developed for the crash data and crash modeling results.

e Point-based crash visualization
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Figure 3.1. Point-based crash visualization



e Segment-based safety index visualization
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Figure 3.2. Segment-based safety index visualization

e Area-based safety index visualization
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Figure 3.3. Area-based safety index visualization
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Figure 3.4. Crash heatmap
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Figure 3.5. Safety report

The safety assessment methods coupled with powerful visualization could assist the decision makers by
transferring data analysis results into actionable insights. With the help of the safety platform, RITI
communities could obtain funding based on the analytical results of the safety tool, make effective use
of the resources utilizing the safety tool to prioritize the high-risk roadway segments, and apply
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countermeasures based on the analysis of risk factors of the selected roadway sections. As many state
and local agencies, especially in RITI communities, are experiencing similar safety issues, the analytical
methods and tool developed in this project can be modified to support these agencies as well.
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CHAPTER 4. ROADWAY SAFETY ASSESSMENT METHODS FOR RITI COMMUNITIES

It is well known that some of the differences of roadway geometric characteristics between roads in
rural and urban areas, such as lane width, shoulder width and type, number of curves and curve rate,
grade, etc. contribute to the higher fatality rate in rural areas, especially in the RITI communities. Human
behavior factors, such as driving under the influence (DUI), speeding, unrestrained driver/occupant, and
distracted driver, etc. could lead to serious injuries and fatalities. In addition, adverse weather
conditions, such as fog, snow, ice, and severe rain on rural roads will lead to dangerous driving
conditions and increase the risk of having crashes. While most rural road traffic safety related studies
have focused on major facilities, few efforts have been made to investigate the crash injuries on low-
volume roads. These less-travelled roads do not expect to serve high volumes of vehicles, and are often
built with lower geometric standards. Nonetheless, drivers or pedestrians still have the same right to
travel on these roads safely. In order to help decision makers better understand the influential factors
on rural road safety and implement effective safety countermeasures accordingly, this project aims to
investigate the potential influential factors, such as roadway geometric characteristics, environmental
conditions, human behaviors, traffic conditions, etc., on the injury severity of crashes that occurred on
low-volume rural roads.

4.1. Crash Injury Analysis

This project investigated the potential influential factors, such as roadway geometric characteristics,
environmental conditions, human behaviors, and traffic conditions as shown in Table 4-1, on the injury
severity of crashes occurred on low-volume rural roads. Four models, including ordered probit (OP),
multinomial logit (MNL), artificial neural network (ANN) and random forest (RF), were trained, tested,
and validated using five years (2013to 2017) of Washington State crash records on low-volume rural
roads. It was found that the two Machine Learning models (ANN and RF) performed better than the two
statistical models (OP and MNL), and the RF model had the best performance in predicting crash injury
severities. The results also showed that variables such as grade percentage, degrees of curvature,
shoulder width, driver’s gender, roadway width, head on crash, pedestrian/cyclist involved, young
driver, and truck involved, have significant impact on the crash injury severities on low-volume rural
roads.

All the models applied in this project were developed using Python and libraries such as Scikit-Learn

(Pedregosa et al., 2011) and TensorFlow (Abadi et al., 2016). The performance of the four models were

measured using the accuracy scored calculated in Equation 1:
Tp+T

Tp+Ty+Fp+Fy

(1)

Accuracy =

Where T, is true positive, T, is true negative, F, is false positive, and F, is false negative.

Table 4-2 shows the accuracy score of the four models. Despite the fact that the OP model can capture
the ordinal nature of the crash injury severities, the MNL method in this study outperformed the OP
model in prediction accuracy. This is most likely because the crash injury severity variables for the OP
model are the same while the MNL method had different variables to predict each crash injury severity
category. The accuracy scores also indicated that the ML methods had better performance than the
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statistical method, and the RF model had the overall best performance in predicting crash injury severity
on low-volume rural roads in this research.

Table 4-1. Selected variables

Variable

Definition

Range/Categories

Crash Injury Severity

Crash injury severities

Fatal, Injury, PDO

segment

Roadway Road Surface | Surface material type Asphalt, Bituminous, Gravel,
Geometrics Material Portland Concrete Cem, Soil, Other
Lane Width Calculate lane width: calculated by Continuous, in ft
dividing the total roadway width by
the total number of lanes
Roadway Total roadway width for the roadway | Continuous, in ft
Width segment
Degree of Degree of curvature for the curve: Continuous, in ft
Curvature calculated from curve radius
Left Shoulder | The width of the inside (left) shoulder | Continuous, in ft
Width of road in feet in the increasing
direction of the roadway.
Right The width of the outside (right) Continuous, in ft
Shoulder shoulder road in feet in the increasing
Width direction of the roadway.
Grade Percent grade for this roadway Continuous, in %
Percentage segment
Vehicle Truck If the involved vehicle is truck Yes, No
Information Old Car If the involved vehicle was more than | Yes, No
15 years old at the time of crash
Traffic AADT Calculated Annual average daily Integer
Characteristics traffic (AADT)
Truck Truck percentage for the roadway Continuous, in %
percentage segment
MVMT Million vehicle miles traveled on road | Continuous, in veh-mile

Table 4-2. Model performance

Model Accuracy
opP 0.47
MNL 0.67
ANN 0.72
RF 0.79
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To identify the variables that have the most predictive power, variable importance is calculated and
ranked for each variable in the final RF model. The variable importance is computed as the impurity

decrease weighted by the probability of reaching that node. In this study, the Scikit-Learn library was
used to calculate the impurity-based feature importance. As shown in Figure 1.1, the variable
importance rankings indicate that variables such as grade percentage, degrees of curvature, shoulder
width, driver’s gender, roadway width, head on crash, pedestrian/cyclist involved, young driver, truck
involved, all have a significant impact on the crash injury severities on low-volume rural roads.
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Figure 4.1. Variable importance ranking for significant factors
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According to the analysis, roadway geometric factors such as grade percentage, degrees of curvature,
left and right shoulder width, roadway width, lane width, and road surface material, were among the
most significant factors for crash injury severity. Given their functional class and geometric design
standards, many of the rural roads with low traffic volume are narrow and without shoulders. Some of
these roads tend to have sharp curves and steep hills. Many such roadways in the rural area have
rough/no pavement, which could be dangerous to travel, especially under adverse weather conditions.
With the random nature of crash events and the low traffic volume of these rural facilities, it is difficult
to identify the crash hotspots compared to the higher volume roads. In this case, it is critical to provide
geometric design guidelines based on the unique characteristics of the low-volume rural roads, as well
as using signs and markings to improve the safety conditions.

Driver Characteristics

Driver’s characteristics including gender, age (young and older drivers), and behavior (DUI) were also
found to have significant impact on crash injury severity on low-volume rural roads. Other researchers,

such as Souleyrette et al. (2010) also recognized that impaired driving, younger or older driver to be
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increasing the severity of crashes on low-volume rural roads. This is evident as not only the human
behavior factors are always significant towards traffic safety, but also the relatively challenging
geometrics conditions of the low-volume rural facilities pose more requirements on the driver’s ability
to travel safely.

Crash Type and Vehicle Information

Crash types, especially head on crashes and pedestrian/cyclist involved crashes were found to be
important in the crash injury severities prediction models. Head on crashes and pedestrian/cyclist
involved crashes have a much higher rate of injury and fatality compared to other crash types. In
addition, if the involved vehicle is a truck and if the vehicle is older than 15 years were recognized as
important contributing factors as well. While the majority of pedestrian related injuries and fatalities
occurred in the urban areas because of higher population rate, pedestrians and cyclists are exposed to
many risks in the rural areas, especially when travelling on the low-volume facilities with poor
infrastructure and lack of regulations towards pedestrian safety. As trucks require higher levels of
visibility conditions and road geometrics to ensure driving safety, the sharp curves, steep grades, and
narrow road width in low-volume rural facilities cause blind spots to truck drivers. The implementation
of signs or sensors at the risky locations to warn the truck drivers and pedestrians could help prevent
crashes from happening. Several other crash types, such as rollover, animal strikes and other objects
and road departure, were also found to have significant impact.

Environmental Conditions

The model results indicated that the light conditions have significant impact on crush injury severities. A
study by Abdel-Aty (2003) also found that dark lighting conditions contribute to higher probability of
roadway injuries. Plainis et al. found that in the United Kingdom, the crash fatality rate is higher during
nighttime than daytime (Plainis et al., 2006). In this case, it is important for decision makers to enhance
the lighting conditions on rural roads, especially during the nighttime. In addition, weather conditions
such as rain and snow were also found to be significant as well as road surface conditions (dry/wet). Wet
road surface could be caused by weather conditions such as snow, ice and rain.

4.2. Pedestrian Safety Analysis

Four classification techniques were applied to assess how roadway features mainly correlate to
pedestrian fatal crashes: Logistic Regression, Nearest Neighbor Classification, Decision Tree, and
Random Forest Classifier. Each of the four modeling approaches was implemented using K-fold cross-
validation, a process that allows choosing the best parameters for the model. Their results were
evaluated and then compared in terms of accuracy score and confusion matrices for the testing data set.
It was found that the Decision tree had consistent results and the best performance among all models,
showing how the distinct predictors relate to each other to predict fatal pedestrian collisions. This
project focuses on specific roadway factors that precipitate fatal pedestrian collisions. Specifically, we
aimed to predict the severity of a pedestrian collision based upon the existing roadway characteristics at
the location of the collision. This allows practitioners to pinpoint the locations where the highest
severity of pedestrian collision is likely to occur so that they can prioritize locations and treatments for
pedestrian safety countermeasures.
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For this study, four different Machine Learning classification techniques were used to assess how
roadway features and some other factors correlate to pedestrian fatal collisions. An overview of each of
these modeling techniques is presented below.

Logistic Regression

Logistic regression is a classical method for binary classification whose parameters are estimated by
maximizing the likelihood estimation through the following equation:

Pr (y=1)

9 oo = Pot ZiziBixi (2)
Where: Pr represents the probability of a sample belonging to class 1, 8, = intercept and f5; =
coefficients. The expression Pro=1) corresponds to the odds, where log Pro=1) represents the

1-Pr(y=1) 1-Pr(y=1)

log odds. The goal is to predict the log-odds, which is converted to probability through the logistic
function.

Logistic regressions can also have a penalty term related to the model complexity. It is represented for
the hyperparameter C that controls the inverse of model complexity (smaller values imply stronger
regularization). The hyperparameter selection was made using the k-fold cross-validation method,
where the training data is split into k groups to select the best value of C. The value of k usually varies
from 5 to 10, and due to the data size used in this study, k = 5 was selected. Cross-validation is also an
appropriate technique to avoid overfitting issues, a Machine Learning sign of poor performance occurs
when the model fits perfectly the training data set, including its noise or outliers.

We built an initial logit regression with all the variables having Fatal as the response variable. Results
were then analyzed to verify the significance of each of the variables’ coefficients. As a common
practice, a level of significance of 0.05 was established, so that each variable with a statistical p-value
less than 0.05 was considered significant. A second logistic regression model was built using only the
significant variables identified in the initial model.

The following table presents the coefficients for the final logistic model using k-fold cross-validation,
where all the variables are significant to a level of 0.05, except for the “rural” variable (p-value =
0.1272). However, since we are equally interested in understanding whether rural areas may have a
distinct impact on pedestrian fatal collisions compared to urban areas, we decided to keep this variable
in the model.Table 4-3. Results for the Logistic regression are the final set of variables used in all the
other models that will be presented below.

Table 4-3. Results for the Logistic regression

Variable Coefficient
Intercept -0.0026
SPD_LIMT -0.0124
LANEWID -0.0273
RSHLDWID 0.1999

15



Variable Coefficient

AADT 0.0000
TRKPCTS 0.0706
RURAL -0.0313
LIGHT_DAYLIGHT -0.3674
LIGHT_DARKLIGHTSON -0.2014
LIGHT_DARKNOLIGHT 0.0002
WEATHER_CLEAR -0.2106
FREEWAY 0.0142
2-LANEROAD -0.0580
MULTILANE_NON-FREWAY -0.1868

Penalty value: 5.0

Accuracy on training data set: 0.759

Accuracy on testing data set: 0.826

The results show noteworthy insights about the relationship between each variable and their impact on
the occurrence of fatal crashes involving pedestrians. SPD_LIMIT and LANEWID have surprisingly
negative impacts on the outcome, suggesting that roadways with higher speed limits and lane width
tend to be related to fewer fatal collisions. This outcome should be interpreted with caution though,
particularly because this analysis does not include features that may be linked to these variables’ effects.
For example, demographic predictors are not present in this model.

On the other hand, RSHLDW!ID and TRKPCTS all have positive coefficients, which may indicate that roads
with wider right shoulders and a higher percentage of trucks are more likely to have pedestrian fatal
collisions. Rural roads seem to be less likely to have fatal crashes compared to urban roads, whereas
daylight periods have the most negative impact on the response variable. However, dark periods when
street lights are off or absent are more likely to generate fatal crashes, which intuitively makes sense. As
expected, days with clear or partly cloudy weather are less likely to have lethal collisions, and freeways
are more likely to be associated with this type of crash, which may be explained by their general higher
volume compared to other roads (although AADT has a positive coefficient, its value is practically equal
to zero).

Regarding model accuracy, we observe that the testing data set has a higher accuracy when compared
to the training data set (0.826 against 0.759, respectively). Since the model is fitted using the training
data and then used to predict testing samples, having a higher accuracy on the testing data set does not
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seem to be conceivable. This may indicate that logistic regression is not a suitable model type for this
study.

Nearest Neighbor Classification

Nearest Neighbor Classification is a method that uses class labels of the K nearest neighbors to
determine the class label of an unknown record using proximity metrics to calculate distance/similarity
between records. The number of nearest neighbors (K) is a hyperparameter that must be provided,
along with the distance metric (Minkowski distances are usually used). Choosing the values of K can be
difficult, since a too-small K may lead to neighborhoods that are sensitive to noise points, whereas a
too-large K may make a neighborhood include points from other classes. K-fold cross-validation is an
effective method to handle this issue, where distinct values of K can be analyzed using the training data
set, as well as distinct values for parameters such as the exponent factor “p” for the Minkowski distance
and the weights associated with the distances. A final model with the best parameters is then fitted and
can be applied to the testing data set. Therefore, a third model using Nearest Neighbor Classification
with k-fold cross-validation was built using the same set of significant variables applied to the second
logistic regression.

The following figure is a dashboard with the results for the Nearest Neighbor Classification. It shows the
best value of parameters selected after cross-validation using Minkowski as the distance metric: number
of neighbors, the exponent factor “p” for the Minkowski distance, and the criteria of weights (two
possible options: uniform and distance). The table also presents the accuracy scores for the training and
testing data sets, in addition to the confusion matrix (right column) showing the right and wrong
predictions for the testing data set.

Best parameters

N. neighbors: 3

- 300

“E - 250

p:1

- 200

Metric: Minkowski

-150

Weights: Distance

Accuracy on training data set: 0.997 0 1

Accuracy on testing data set: 0.857

Figure 4.2. Dashboard with the results for the Nearest Neighbor Classification

We observe from Figure 4.2 that the accuracy of the training data set is higher than the testing data set,
which is reasonable. However, the accuracy for the training data is practically equal to 1, almost a
“perfect” fit to the training data. As previously mentioned, this is a sign of overfitting, which suggests
that this model, even after cross-validation, may not represent a good fit for the studied data set. Like
the logistic regression, the confusion matrix for testing predicted values shows that the model is biased
predicting 0 values (non-fatal collisions).

Decision Tree
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Decision trees are another effective tool to handle classification problems. The goal is to classify data
(leaf nodes of the tree) from the characteristics of the predictor variables (decision nodes). If D:is the set
of training data points reaching a node t, two options exist: if D contains data points that belong to the
same class yt, then tis a leaf node labeled as y;; if D contains records that belong to more than one
class, we should use an attribute test to split the data into smaller subsets and recursively apply the
procedure to each subset. However, early terminations are often applied to stop the splitting procedure
to avoid overfitting issues.

To define the best split, we follow the Greedy approach which establishes that nodes with “purer” class
distribution are preferred, i.e. nodes with samples mainly distributed towards one of the classes. We
applied the Gini Index as a measure of node impurity, computed as follows:

GINI (t) =1 =%, [p(j|t)]? (2)

Where p(j|t) is the relative frequency of the class j at node t. GINI is maximized when the points are
equally distributed among all classes, showing the least interesting information. The minimum (0) occurs
when all records belong to one class, indicating the most interesting information for that node.

To avoid overfitting and to select an appropriate number of parameters such as minimum samples per
leaf nodes and the maximum depth, we applied k-fold cross-validation as was done for the other models
to choose the optimal hyper-parameters (always with k=5). A new model was thus fitted using the same
set of final variables that were applied for the previous two models.

The results of fitting a decision tree using cross-validation are summarized in Figure 4.3. We can observe
that two parameters were tested during the cross-validation process in order to get the best modeling
performance: the maximum depth of the three (i.e. the number of horizontal levels of a top-down tree
from its root) and the minimum samples in leaf nodes. Additionally, there are the accuracy scores for
the training and testing data sets, as well as the confusion matrix with predictions for the testing data.

Best parameters

- 300

- 250

Maximum depth: 5
-200
Minimum samples in leaf node: 5 -150

Accuracy on training data set: 0.885 0 1

Accuracy on testing data set: 0.874

Figure 4.3. Dashboard with the results for the Decision Tree

The results of Figure 4.3 show that the best tree that fits the training data has a maximum depth of 5
levels, with a minimum of 5 samples for the leaf nodes. These parameters help to avoid overfitting
issues, which can be seen for the accuracy score of the training data set: 0.885 (a high value not too
close to 1). The accuracy score for the testing data (0.874) is also high and slightly less than the training’s
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score, which is a good performance indicator for this model. However, the confusion matrix once again
shows that the model is biased to predicting 0 values (non-fatal collisions).

Random Forest Classifier

Random Forest classifiers are part of the so-called Ensemble Methods, ML classification techniques
aiming at building a set of base classifiers from the training data set and predicting the class label of test
records by combining the predictions made by all base classifiers (through majority vote). Ensemble
methods also aim to reduce the variance of complex models by aggregating responses of multiple base
classifiers.

Ensemble methods generally need independent base classifiers, and Random Forest techniques are well
aligned with this. They fit a full decision tree by randomizing which predictors would be available for a
given node, which alleviates the split on similar predictors for bagged trees.

We developed a final model by applying a Random Forest Classifier for the same final set of significant
variables used in the previous models. Likewise, we used k-fold cross-validations to select parameters
needed for this method, such as maximum depth for the trees and the number of trees in the forest
(“number of estimators”).

All the models in this study were evaluated and compared in terms of the accuracy score for the training
and testing data sets. Accuracy scores vary from 0 to 1, and values close to one denote effective
predictions. However, models with accuracy scores approximately equal to 1 may indicate overfitting
issues and are not suitable. Additionally, we applied confusion matrices to the testing data of each of
the models to evaluate their level of predictions. A confusion matrix is a representation of the
classification rate for a classifier method and has 4 quadrants indicating the number of right and wrong
predictions for the class.

We compared each model to verify which one performed better when predicting the occurrence of fatal
collisions involving pedestrians. The following table summarizes the best parameters related to the
Random Forest Classifier after cross-validation (maximum depth and number of estimators), as well as
the accuracy score for the training and testing data sets and the confusion matrix for the predicted
tested values.

Table 4-4. Dashboard with the results for the Random Forest Classifier

Best parameters

- 300

34e+02 s o

Maximum depth: 5

- 200
Number of estimators: 100 150

Accuracy on training data set: 0.883 0 1

Accuracy on testing data set: 0.867
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The two classification techniques that best fit the data and have consistent and high accuracy scores for
the training and testing data sets are the Decision Tree and the Random Forest Classifier. Since both
models are based on building classifier trees and have similar parameters, we would expect them to
have related performances. Nevertheless, the Decision Tree has a slightly higher accuracy score on the
testing data (0.874) when compared to the same metric for the Random Forest Classifier (0.867), thus
this is the model with the best performance among all. Furthermore, we noted from the results that the
confusion matrices for all the models were alike: even though they have substantially more correct than
incorrect predictions, they are all biased to predict 0 values (non-fatal collisions). Since this is happening
with all the models, we believe that is derived from the dataset itself and its errors rather than
specificities related to any of the modeling approaches used in this study.

With the best performance among all models, the Decision Tree represents how the combination of
predictor variables leads to fatal or non-fatal accidents involving pedestrians. However, not all the
predictor variables are used as decision nodes for the final tree, and this is due to the selected
parameters after the cross-validation process, particularly for the maximum depth. Indeed, since we
have 12 final predictor variables, a tree having almost all of them used as decision nodes would require
a higher depth, but large-sized trees are generally not easy to interpret and may likely lead to
overfitting. In this case, the Machine Learning algorithm searches for the set of variables that mostly
impact the outcome for the selected tree depth.
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CHAPTER 5. ROADWAY SAFETY COUNTERMEASURES ANALYSIS AND RECOMMENDATION

5.1. Introduction

In addition to developing the safety assessment methods, this project also investigated the safety
countermeasures for RITI communities. Safety countermeasures are developed and implemented to
reduce crash frequency and accident severity on road systems. Concerning the rural, isolated, tribal and
indigenous (RITI) communities, this is even more critical. Studies indicated that crashes involving
pedestrians in RITI communities often lead to severe injuries or fatalities (Marshall and Ferenchak, 2017;
Baireddy et al., 2018; Chen and Fan, 2019). The lack of accommodation, such as sidewalks, marked
crosswalks, lighting conditions, and traffic control, makes pedestrians and bicyclists at a high
disadvantage in these RITI communities. Over seventy percent of pedestrian fatalities on tribal lands
occurred in the rural areas (Awwad-Rafferty et al., 2019), where approximately seventy-five percent of
them happened at night. Additionally, aggravating cultural and human behaviors such as speeding,
driving under the influence, and pedestrian behavior make the problem even worse.

Specifically, the research team has reached out to RITI communities and established a formal research
partnership with the Yakama Nation. By working with the traffic engineers and planners in the Yakama
Nation DNR Engineering Department, the research team has conducted research on safety
countermeasures analysis and recommendation for RITI communities.

5.2. Crash Modification Factors (CMFs)

Use of Crash Modification Factors (CMFs) is a common way of assessing the efficacy of safety
countermeasures. According to the CMF Clearinghouse (Crash Modification Factors Clearinghouse,
accessed 03/23/2021), a Crash Modification Factor is “a multiplicative factor that indicates the
proportion of crashes that would be expected after implementing a countermeasure” (installing a traffic
signal or a median barrier, increasing the width of edgelines, etc). CMFs with values less than 1.0
indicate expected decreases in crashes, whereas values greater than 1.0 indicate a likely increase in
crashes. Harkey et al. (2008), as cited by CMF Clearinghouse, gives a practical example for using the
CMF: a specific stop-controlled intersection is expected to have 5.2 total crashes per year, so a traffic
signal is planned to be installed. The CMF for installing the traffic signal is estimated at 0.56 for the total
of crashes, thus the expected total crashes after installing the signal would be 5.2 x 0.56 = 2.9 (total
crashes per year).

The Crash Reduction Factor (CRF) is a distinct way of evaluating the effect of countermeasures related to
the expected decrease in crashes and can be calculated as:

CRF =100 (1 — CMF) (3)

Although some transportation agencies in the United States have been utilizing CRFs, the use of CMF has
been encouraged in recent years for the safety field. This is due to interpretative confusions that may be
raised since CRFs can present negative reduction values for CMFs larger than 1, which actually indicates
expected crashes increasing.

Figure 5.1 shows how distinct countermeasures can be visualized and compared on the CMF
Clearinghouse page for distinct categories.
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Table 2. Countermeasure Category Descriptions.

~ Category: Roadside (248)

Category Description
Access management Relates to managing access ta the roadway, including median Subcategory: Shoulder width (2)
presence, left turn restricting designs such as left-overs, access point
density, and driveway reduction ~ Countermeasure: Increase lateral clearance from 10 to 40 feet
Advanced technology and ITS | Relates to technology-driven strategies, including such things as red
light cameras, speed cameras, and dynamic wamning signs CMF  CRF(%) Quality CrashType CrashSeverity ~ AreaType  Reference Comments
Alignment Relates to vertical or horizontal alignment of the roadway, including w&g}an
such things as grade, curve radius, and spirals
ngs 1S P o Fatal Serlous sg'i"r.";ﬁs This CMF applies to
Bicyclists Relates to bicycle safety 068 32 vehicle InluryMinor Runl  GeepipaLly, — Singlevehice .
ycists ycle st injury e [READ MORE]
Delineation Relates to delineation of the travelway DOMINIQUE
Highway lighting Relates to lighting along the roadway LORD, 2012
Interchange design Relates to interchange design, including such things as conversion to
another type of interchange, ramp design, and YICHUAN
acceleration/deceleration lanes P
| Runolf rosdSingle Fatal Serious Slie This CMF applies to
Intersection geometry Relates to geometric and physical design of an intersection 0.49 51 < injury,Minor Rural single-vehicle ..
vt injury GEEDIPALLY, ' {READ MORE)
- NI
| Intersection traffic control Relates to traffic control at intersections DOMINIQUE
On-street parking Relates to parking on the street, including such things as prohibitions, LORD, 2012
time of day restrictions, and parking design | Compare |
| Pedestrians Relates to pedestrian safety M s e e
Railroad grade crossings Relates to railroad grade crossings, including such things as signals, - Sub Roadside barri
gate arms, and warning devices ubcategory: Roadside barriers (12)
Roadside Relates to anything beyond the shoulder on either side of the road,
including median area. This includes such things as slopes, ditches, = Ceuntermeasure: Imprave guardrail
culverts, abutments, guardrails, and sight distance
CMF  CRF(%)  Quality Crash Type CrashSeverity ~ AreaType  Reference Comments
Roadway Relates to the traveled surface of the roadway, including all types of
lanes (through, turning, passing), and the roadway surface FatalSerious
€ 6 Passing; v 078 2 A injuryMinor mrd  CAFISOET ::“F’[;“E’:u'ﬂ:;:z'l
Shoulder treatments Relates to anything on the paved or unpaved shoulder of the roadway injury " :
Signs. Relates to signing Fatal Serious CAFISOET  CMFslormumoif-road
Speed management Relates to the management of vehicle speeds 067 3 Run off road injuryMinar Rural AL20t4 fataland l'fm’
Transit Relates to transit issues involving buses, light rail, and other transit bt
vehicles
T T " r Fatal Seric CMFs a-run-off-
Wark zone Relates to work zones, including such things as lane closures, times of 098 2 Other fongMinor ral  GSOET Foadfutdland’s
activity, and traffic operations injury . IREAD MORE]
e ——

Figure 5.1. Safety countermeasures examples from CMF Clearinghouse. Source: CMF Clearinghouse
(03/01/2021)

5.3. Safety Improvements on Rural Roads

5.3.1. Avoiding Vehicle-Vehicle Crashes

As previously mentioned, safety countermeasures can be classified according to distinct categories. Each
one has its specificities and parameters, such as CMF, CRF, and Benefit-Cost ratios. Examples for some
categories are listed below (National Center for Rural Road Safety, 2016):

e Road alignment
o Horizontal alignment signs
o Flashing beacons
o Chevrons
o Post mounted delineators
o Raised pavement markers
e Cross Section
o Widen lanes
o Widen shoulders
o Adding shoulders
o Stabilizing shoulders
o High friction surface treatments
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e Roadside Features
o Flatten side slopes
o Install safety edge
o Object markers
o Relocate objects
o Remove objects
e Miscellaneous
o Shoulder rumble strips/stripes
o Centerline rumble stripes
o Edge-line markings
o Centerline markings
o Widen edge-line markings
o Widen centerline markings

Additionally, rural collectors and rural local roads are within the scope of High-Risk Rural Roads by the
Manual for Selecting Safety Improvements on High Risk Rural Roads (Atkinson et. al., 2014). This manual
presents information about cost and benefits as well as the CMF of safety treatments on high-risk rural
roads. The manual is organized by roadway feature type, such as horizontal curves, intersections,
roadside, signing, etc., providing a treatment matrix for each treatment presented. This matrix presents
an overview of benefits and costs related to each safety countermeasure and can be used to compare
them. An example of a treatment matrix for pavement and shoulder resurfacing is shown in Figure 5.2.
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S 'Y BENEFIT-COST
BENEFIT RATIO™

Install a Safety Edge 86 s - 20 P 085092 334 2672 409 4032
Install Center Line Rumble Strips 87 s - 10 P 075085 213 1706 261 2575
Install Edge Line or Shoulder Rumble Strips 88 s - 10 P 078090 586 4690 718 707.7
Install Transverse Rumble Strips 89 s P 076.091

Regrade or Recondition Gravel Lanes 90 §-$$ 1y

Install Targeted Longitudinal Rumble Strips at Key

Locations (Such as on the Outside of Horizontal Curves 91  §5-88§ ‘¥ 0.85

Only)

Install or Maintain a Graded Shoulder 92 §5-888 P 0.52

Provide Turnout Areas 93 $3.888 T

Improve Pavement Friction/Increase Skid Resistance 94 $888 - 10 P 025060 33 267 41 403
Add Paved Shoulder 95 $§88s  §§ 2 P 0.86 n/a nfa 05 45
Widen Existing Travel Lanes by Two Feet or LessperLane 96  §$88§  $$§ 10 P 095 na n/a 03 28
Install Passing or Climbing Lanes 97 $888§ Sss 10 P 03 23 04 35
Increase Shoulder Width 98  S$8SS§ P 05.097

Improve Superelevation at Horizontal Curve Locations 99  §SSs§ P

Cost: NCHRP 500 Performance Rating ' *Lower Volume <1000 vpd

§ = 0 to $5,000 P - Proven **Higher Volume = Between 1,001 and 8000 vpd

$$ = $5.001 to $20,000 T - Tried ***Optimal Conditions = 12-foot lancs, 6-foot paved shoulkders
$5$ = $20,001 to $50,000 E - Experimental ****Narrower Conditions = 10-foot lancs and no shoulders

$88S =~ $50,001 to $100,000 U - Unknown

$$58S « $100,001 and up

Figure 5.2. Treatment matrix for pavement and shoulder resurfacing (FHWA Manual for Selecting Safety
Improvements on High Risk Rural Roads, 2014)

Some examples of countermeasures with high benefit costs ratios related to pavement and shoulder
resurfacing are presented as follows.

Edge line (or Shoulder rumble strips) and Center Line Rumble Strips

Rumble strips provide both an audible warning and a physical vibration that alerts drivers they are
leaving the driving lane. The treatment matrices for these types of safety countermeasure are presented
as follows™.

! Definition from the FHWA Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014:
Lower Volume <1000 vpd

Higher Volume = Between 1,001 and 8000 vpd

Optimal Conditions = 12-foot lanes, 6-foot paved shoulders

Narrower Conditions = 10-foot lanes and no shoulders

NCHRP 500 Performance. Proven: The safety effect for other similar applications has shown a proven benefit.
Tried: The treatment has indications that it can be expected to reduce crashes, but has some conflicting reports as
to its associated safety effects or has been deployed and observed to be effective. Experimental: New treatments
that still need to be tested and for which the safety effect is unknown. Unknown: Not enough is known about an
associated safety performance.
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Install Edge Line or Shoulder Rumble Strips

Benefi NCHRP 500 Crash

- Initial Investment: §3,000 R‘;;Inst Performance Modification
- Cost of Maintenance: n/a Rating Factor (CMF)
- Frequency of Maintenance: 10 years (2 applications)

Lower Volume Optimal Conditions 58.6 Proven 0.75-0.90
Higher Volume Optimal Conditions 469.0 Proven 0.78-0.90
Lower Volume Narrower Conditions 718 Proven 0.78-0.90
Higher Volume Narrower Conditions T07.7 Proven 0.78-0.90

Figure 5.3. Treatment matrix for installing Edge line or Shoulder rumble strips (FHWA Manual for
Selecting Safety Improvements on High Risk Rural Roads, 2014)

Install Center Line Rumble Strips
- Initial Investment: $5,000

NCHRP 500 Crash
Performance Meodification

- Cost of Maintenance: n/a Rating Factor (CMF)

- Frequency of Maintenance: 10 years (2 applications)

Lower Volume Optimal Conditions 213 Proven 0.75-0.85
| Higher Volume Optimal Conditions 1706 Proven 0.75-0.85
| Lower Volume Narrower Conditions 26.1 Proven 0.75-0.85
| Higher Volume Narrower Conditions 2575 Proven 0.75-0.85

Figure 5.4. Treatment matrix for installing Center Line Rumble Strips (FHWA Manual for Selecting Safety
Improvements on High Risk Rural Roads, 2014)

Use:

e Edge line: On roads with a history of departure crashes. Center Line Rumble Strips: Any roads,
especially those with a history of head-on crashes.

e “For all rumble strips, pavement conditions should be sufficient to accept milled rumble strips”.
(Atkinson et. al., 2014)

e “Rumble strips should be provided on all new rural freeways and on all new rural two-lane
highways with travel speeds of 50 mph or greater”. (Atkinson et. al., 2014)

Safety Edge

This treatment aims at minimizing drop-off related crashes by sloping the pavement edge at an angle, so
the driver can safely reenter the road after driving onto the shoulder.
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Install a Safety Edge
- Initial Investment: $2,145 Benefit-Cost

NCHRP 500 Crash
Performance Modification

- Cost of Maintenance: n/a Ratio Rating Factor (CMF)

- Frequency of Maintenance: 20 years

Lower Volume Optimal Conditions 334 Proven 0.85-0.92
Higher Volume Optimal Conditions 267.2 Proven 0.85-0.92
Lower Volume Narrower Conditions 409 Proven 0.85-0.92
Higher Volume Narrower Conditions 403.2 Proven 0.85-0.92

Figure 5.5. Treatment matrix for installing Safety Edge (FHWA Manual for Selecting Safety Improvements
on High Risk Rural Roads, 2014)

Use:

e “Each State should implement policies and procedures to incorporate the Safety Edge where
pavement and non-pavement surfaces interface on all paving and resurfacing projects with
surface differentials of 2.5 inches or more”. (Atkinson et. al., 2014)

e The Safety Edge is properly used at spots where pavement edge drop-offs occur through
everyday use, which is the case of rural roads with unpaved shoulders.

The National Center for Rural Road Safety, founded by the Federal Highway Administration in 2014, is
also focused on improving safety on rural roads by “supporting local, state, and tribal road owners and
their stakeholders” (National Center for Rural Road Safety web page, accessed 03/23/2021). They
publish several analyses regarding rural road safety on their web portal, where the presentation “Crash
Risk Factors for Low-Volume Roads: an ODOT Case Study” (2016) shows an evaluation of low-cost safety
countermeasures that can be implemented on low-volume road roads in terms of benefit-cost (B/C)
ratios. The following figure summarizes the overall B/C ranges for several safety countermeasures on
rural roads:
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Overall B/C ranges

<0.5
speed feedback sign
high-friction surface

15 25

1
~25 to ~40
shoulder rumble strips
centerline rumble strips

widen lane/shoulder

~1 to ~2
relocate objects
horiz. align. sign
beacon for curv.
post-mount. delineator
chevrons

raised pavement mark.

~2to~4

stabilize shoulder

widen un-pav. shoulder
flatten side slope

edgeline marking/widening

Figure 5.6. Benefit-Cost Diagram for distinct safety countermeasures used on rural roads (Crash Risk
Factors for Low-Volume Roads: an ODOT Case Study, 2016. National Center for Rural Road Safety)

The analysis of the diagram shows that countermeasures related to pavement and shoulder resurfaces
as well as to cross-sections and roadside features have higher B/C rations when compared to those from
road alignment. Nonetheless, according to the study, alignment countermeasures are highly used for
low-volume rural roads particularly for their low-cost implementation, as well as for their effectiveness
concerning crash reduction. For instance, the study results show that chevrons and arrow signs reduced
injury and fatal crashes by 18% and night-time crashes by 27.5%?, while raised pavement marks reduced
total crashes from 224 to 33, fatalities from 7 to 0, and injuries from 152 to 103. Some of these safety
countermeasures often used on low-volume rural roads are described below based on the FHWA
Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014.

Horizontal Alignment Signs

Horizontal alignment signs can be used to alert drivers about changes related to the road geometry,
providing them with some information about the type of curve they are approaching. The table below
shows CMFs equal to 0.7, which represents a significant Crash Reduction Factor (CRF) of 30%.

2 Empirical Bayes before and after (average of 5.6 years before data and 5.4 years of after data) for 89 rural two-
lane curves in Connecticut and 139 rural two-lane curves in Washington State.

3 Simple before and after (4 years data before and 4 years data after) for 10 rural roadways (tangents and curves)
in Mobile County, AL, with documented high run-off-road crashes.

27



Table 5-1. Treatment matrix for installing Horizontal Alignment Signs (FHWA Manual for Selecting Safety
Improvements on High Risk Rural Roads, 2014).

: NCHRP 500 Crash
R =~ Performance Modification
: Rating Factor (CMF) —
Lower Volume Optimal Conditions 338 Proven 0.70 @ ® @ @
Higher Volume Optimal Conditions 270.1 Proven 0.70 m ma s ma
Lower Volume Narrower Conditions 435 Proven 0.70 @ @ ' m
Higher Volume Narrower Conditions 4284 Proven 0.70 e o wie wa
Use:

e Horizontal alignment signs can be applied to any curve or turn with a history of roadway
departure crashes and to those with similar geometry or traffic volume that have not
experienced crashes yet.

e “Warning signs are required on curves or turns where the advisory speed is 10 mph less than the
posted speed”. [2009 Manual on Uniform Traffic Control Devices (MUTCD) cited by Atkinson et.
al., 2014].

e “Studies have shown that reductions in crashes due to the installation of curve warning signs are
more prominent at locations with expressive traffic volumes, sharper curves, or hazardous
roadsides”. (Atkinson et. al., 2014)

Flashing Beacons

Flashing beacons are generally introduced to show the presence of an intersection, improving safety
particularly at spots with night visibility issues, such as the case of Yakima Nation.

Provide Flashing Beacons at Intersection

Approaches NCHRP 500 Crash

Benefit-Cost . .
- Initial Investment: $25,000 Ratio Perfor{llance Modlﬁcatloq
- Cost of Maintenance: $1,000 Rating Factor (CMF)

- Frequency of Maintenance: 2 years

Lower Volume 4-Way Intersections 16.3 Proven 0.85

Higher Volume 4-Way Intersections 56.8 Proven 0.85 ‘
Lower Volume 3-Leg Intersections 6.8 Proven 0.85 ‘
Higher Volume 3-Leg Intersections 35.8 Proven 0.85 ‘

Figure 5.7. Treatment matrix for Flashing Beacons at intersections approaches (FHWA Manual for
Selecting Safety Improvements on High Risk Rural Roads, 2014)

Use:

e |Installed at intersections with no signaling characterized by “patterns of right-angle crashes
related to lack of driver awareness of the intersection on an uncontrolled approach and lack of
driver awareness of the Stop sign on a stop-controlled approach”. (Atkinson et. al., 2014)
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e They can be implemented either atop Stop signs or Advance Intersection Warning Signs.
Chevrons

Chevrons (also known as curve delineation signs) show the road’s alignment when drivers are within the
actual horizontal alignment of a curve. The signs show the shape and degree of curvature, acting as a
guide for drivers through the entire curves/turns.

Install Chevron Signs

NCHRP 500 Crash

- Initial !nve?lment: $7,200 Bcnlelﬁ:_-Cost Performance Modification
- Cost of Mamtena.nce: $3,600 auo Rating Factor (CMF)
- Frequency of Maintenance: 5 years

Lower Volume Optimal Conditions 10.6 Proven 0.75
Higher Volume Optimal Conditions 847 Proven 0.75
Lower Volume Narrower Conditions 13.0 Proven 0.75
Higher Volume Narrower Conditions 127.7 Proven 0.75

Figure 5.8. Treatment matrix for Chevrons (FHWA Manual for Selecting Safety Improvements on High
Risk Rural Roads, 2014)

Use:

e Installed at any curve/turn with a history of roadway departure crashes and at those with similar
geometry or traffic volume that have not experienced crashes yet.

e “Alignment delineation (or a one direction large arrow) is required on curves or turns where the
advisory speed is 15 mph less than the posted speed limit”. [2009 Manual on Uniform Traffic
Control Devices (MUTCD) cited by Atkinson et. al., 2014].

Raised Pavement Markers

Raised pavement markers increase the visual alignment provided by pavement markers, making them
more salient for drivers, especially during adverse weather conditions.

Initial NCHRP 500 Crash

Implementation | Performance Modification
Cost Rating Factor (CMF)

Install Raised Pavement Markers $0 to $20,000 Tried =0.76

Figure 5.9. Treatment matrix for Raised Pavement Markers (FHWA Manual for Selecting Safety
Improvements on High Risk Rural Roads, 2014)

Use:
e On roads with adequate pavement quality to hold the devices in place.

e The type of the marker depends on regional climate (e.g., in areas subject to snowfall, snow
plowable devices should be used)
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5.3.2. Improving Pedestrian and Bicyclist’s Safety

The safety countermeasures already mentioned can also contribute to the reduction of crashes involving
pedestrians and bicyclists. For example, edge lines and chevrons can alert drivers when they are leaving
from the driving lane, protecting pedestrians and cyclists who circulate along the shoulder in areas
without sidewalks or exclusive bike lanes. Likewise, flashing beacons can improve pedestrian and
bicyclist crossing at intersections, particularly during night periods. However, there are specific
treatments whose main goal is to improve safety for these non-motorized users. Some of the
pedestrian/bicyclist safety-oriented countermeasures recommended for Yakima Nation are presented
below (FHWA Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014).

Crosswalks

Providing crosswalks at target locations is an effective treatment to define spots for pedestrian crossings
and to draw drivers’ attention. Indeed, their NCHRP 500 Performance Rating is classified as Proven and
Tried®.

Initial NCHRP 500
Safety Treatment Implementation =~ Performance

Cost Rating
Provide Crosswalks at Targeted Locations $0 to $5,000 Proven & Tried

Figure 5.10. Treatment matrix for implementing crosswalks at target locations (FHWA Manual for
Selecting Safety Improvements on High Risk Rural Roads, 2014)

Use:
Crosswalks can be implemented at:

e Locations with stop signs or traffic signals to indicate crossing sites to pedestrians and to
prevent vehicular traffic from blocking pedestrian paths.

o Non-signalized street crossing sites in specific school zones.

e Non-signalized locations where engineering judgment shows that the number of motor vehicle
lanes, pedestrian exposure, average daily traffic (ADT), posted speed limit, and site’s geometry
would make the use of crosswalks desirable for safety.

However, marked crosswalks alone (i.e., without traffic/pedestrian signals or other expressive crossing
improvements) are not sufficient and should be not used:

® “Where the speed limit exceeds 40 mph (64.4 km/h)

e On roads with four or more lanes without a raised median or crossing island that has (or will
soon have) an ADT of 12,000 or greater.

4 No CMF information provided
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® On roads with four or more lanes with a raised median or crossing island that has (or soon will
have) an ADT of 15,000 or greater”. (Atkinson et. al., 2014)

Sidewalks

Sidewalks provide a refuge for pedestrians and enhance road operations. Their implementation can
considerably improve safety for both drivers and pedestrians, especially at locations with heavy
pedestrian volumes.

Initial NCHRP 500
Safety Treatment Implementation  Performance

Cost Rating
Build Sidewalks $5,001 to $50,000 Proven

Figure 5.11. Treatment matrix for building sidewalks (FHWA Manual for Selecting Safety Improvements
on High Risk Rural Roads, 2014)

Use:

Building sidewalks should be considered for heavy pedestrian volumes existing along a corridor or
specific location.

Pedestrian Hybrid Beacons or High Intensity Activated Crosswalk (HAWK)

The High Intensity Activated Crosswalk (HAWK) is “a pedestrian-activated beacon located on the
roadside and on mast arms over major approaches to an intersection” (Atkinson et. al., 2014). It consists
of two red lenses over a single yellow lens, displaying a red indication to drivers when activated. The
device is illuminated only by pedestrian activation, changing to yellow and then to red to make drivers
stop. It also shows a walking person symbol to pedestrians at the beginning and an upraised hand
symbol with a countdown display at the conclusion of the walk phase. The estimated CMF is 0.712,
indicating a significant safety improvement for pedestrians and drivers.

Initial NCHRP 500 Crash
Safety Treatment Implementation ~ Performance Modification
Cost Rating Factor (CMF)
Install Pedestrian Hybrid Beacons or High Intensity $20,001 to
Activated Crosswalk (HAWK) $100,000 e 0712

Figure 5.12. Treatment matrix for Hybrid Beacons or High Intensity Activated Crosswalk (HAWK), (FHWA
Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014)

Use:

This countermeasure may be used at locations with a significant number of pedestrian crashes where
additional visibility is needed. In Yakima Nation, for example, installing HAWKs could be appropriate at
locations with important historical numbers of crashes involving pedestrians and bicyclists, such as the
W 1°* Ave and S Elm St/Buena Way in Toppenish and the W 1% St and Donald Wapato Rd in Wapato.
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Shared-Use Paved Shoulders for Horse & Buggy Road Users or Bicyclists

Shared-use paved shoulders provide a paved shoulder next to the roadway with sufficient width to allow
movements for other modes of transportation such as horses, buggies, and bicycles. The
implementation of this treatment helps separate slower moving traffic from the main traffic lane,
reducing crashes’ incidences®.

Initial NCHRP 500
Safety Treatment Implementation  Performance

Cost Rating
Construct Shared-Use I.’ave(.i Shoulders for Horse & $5,001 o $50,000 Tried
Buggy Road Users or Bicyclists

Figure 5.13. Treatment matrix for Shared-Use Paved Shoulders for Horse & Buggy Road Users or
Bicyclists, (FHWA Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014)

Use:

This treatment may be used at locations with frequent slower moving traffic, such as bicycle routes and
sites with horse and buggy users.

5.4. Summary of Safety Countermeasures for Yakima Nation

As a RITI community, Yakima Nation faces several road safety problems related to the ongoing road
conditions. Generally, there is a lack of pedestrian facilities, and most roads do not have a shoulder, but
an embankment or a drainage ditch instead. This forces pedestrians to walk essentially on the fog line
or in the live traffic lane along most of these roads. Additionally, most of the population do not have
access to private vehicles, relying on either public transportation (which has limited routes and
schedule) or walking. Several intersections have only stop signs with poor visibility, which can be more
hazardous during winter months when fog regularly limits drivers’ visibility.

Therefore, the countermeasures previously described can be effective treatments for improving safety
in the Yakama Nation road network. However, the choice between them will depend on the
characteristics of each road, which will define the most appropriate treatments to be implemented.

Figure 5.14 shows some road profile examples taken from distinct roads of Yakima Nation.

5 No CMF information provided
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c. lack of signs

d. faded vemetmarn

Figure 5.14. Set of road photos taken from Yakima Nation. Source: Yakama Nation Tribal Traffic Safety

Most of the profiles are formed by low-volume roads, with exceptions for some routes within more
urban centers like Toppenish. From the above photos, we also note a lack of pedestrian and bicycle
facilities, which may be related to the significant number of crashes on certain roads. The following

image shows the spots for crashes involving pedestrians from 2010 to current times, where the majority

are located in the area of Toppenish along W 1°' Ave and S Elm St/Buena Way.
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Figure 5.15. Locations for crashes involving pedestrians in Yakima Nation (2010-current). Source:
Yakama Nation Tribal Traffic Safety

The following table shows the mechanism of motor vehicle-related deaths of Yakima County residents
by race between 1999 and 2016. We observe a higher proportion of Al/AN (American Indian/Alaska
Native) motor vehicle-related deaths for pedestrians when compared to other races (roughly 23% for
Al/AN against 11% for Non-Hispanic Whites - NHW - and 10% for other races). This illustrates the
alarming pedestrian crashes rates among the Al/AN community.

Table 5-2. Mechanism of motor vehicle-related deaths of Yakima County residents by race, 1999-2016.
Source: Yakama Nation Tribal Traffic Safety.

AI/AN | Percentage | NHW | Percentage ?atclir Percentage | Total
Occupant 90 62.1 169 66.5 217 74.6 476
Motorcyclist 0 0.0 27 10.6 9 3.1 36
Pedal cyclist 1 0.7 3 1.2 4 1.4 8
Pedestrian 33 22.8 29 11.4 29 10.0 91
Unspecified 21 14.5 26 10.2 32 11.0 79
Total 145 100.0 254 100.0 291 100.0 690
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The table below shows the Yakima County resident pedestrian deaths by county of death occurrence. 83
out of the total of 91 Yakima County residents who were killed by motor vehicles as pedestrians were in

Yakima County.

Table 5-3. Yakima County resident pedestrian deaths by county of death occurrence. Source: Yakama

Nation Tribal Traffic Safety

County Al/AN NHW Other Total
Non-Washington State or Unknown 2 1 0 3
King County 1 0 0 1
Klickitat County 3 0 0 3
Walla Walla County 0 0 1 1
Yakima County 27 28 28 83
Total 33 29 29 91

Additionally, 50% of the Al/AN pedestrian deaths occurred at night (9 PM —5 AM), against 24% for NHW
and 21% for other races, as seen in the following table. In fact, different from the Al/AN community, the
highest percentage of non-Al/AN pedestrian deaths occurred from 4 PM to 8 PM. These numbers

highlight the predominance of accidents involving pedestrians in RITI communities during night periods.

Table 5-4. Pedestrian deaths by hour of death that occurred in Yakima County 1999-2016. Source:

Yakama Nation Tribal Traffic Safety

Al/AN NHW Other/Unknown
Hour of injury Count | Percent | Count | Percent | Count | Percent | Total
Day time (6AM-3PM) 1 3.57 9 31.03 3 10.71 13
Night time (9PM-5AM) | 14 50.00 7 24.14 6 21.43 27
Rush hour (4-8PM) 9 32.14 10 34.48 10 35.71 29
Missing 4 14.29 3 10.34 9 32.14 16
Total 28 100.00 | 29 100.00 | 28 100.00 | 85

Countermeasures for both low-volume and more urban roads can effectively be implemented to
improve road safety within the area. Some locations may be prioritized, such as spots with historical
numbers of crashes as well as those with actual or expected important demands of pedestrians or
cyclists. Indeed, Yakima Nation is planning to implement a trail for pedestrians and cyclists connecting
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its major city (Toppenish) with other distant locations, so that installing safety countermeasures on
roads that are close to this future trail will be an efficient effort to protect users and drivers. Figure 5.16
depicts the location of this trail plan with some images of nearby roads®.

e

; Terrace
Yakima Heights
Gromore West Valley
Ahtanum Union Gap Moxee

Tampico

Brownstown Farron Ashue Yetho

(7)) @ Liberty

Granger

@

Satus

Heritage Connectivity Trail Plan

Figure 5.16. Trail plan for Yakima Nation. Source: Own elaboration based on information provided by
Yakama Nation Tribal Traffic Safety

The table below summarizes our safety countermeasures recommendations for Yakima Nation
according to their roads’ profile.

Table 5-5. Summary of safety countermeasures recommendations for Yakima Nation

Safety countermeasure Where to implement

Crosswalks Target locations with a high volume of pedestrian circulation
(schools, hospitals, public spaces) and spots with historical
pedestrian crashes.

Sidewalks Locations with urban characteristics and those with significant
pedestrian circulation but without pedestrian facilities.

High Intensity Activated Target locations with a significant number of pedestrian crashes
Crosswalks (HAWK) where additional visibility is needed.

® Two major highways cross Yakima Nation territories: Interstate 82 (I-82) and State Route 22 (SR 22). Although
some of the described countermeasures for high volume roads can be used in specific cases, these roads are not
addressed in the Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014
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Shared-Use Paved Shoulders

Locations with frequent slower moving traffic

Horizontal Alignment Signs

Hazardous curves or turns.

Flashing Beacons

Intersections with no signaling, either atop Stop signs or Advance
Intersection Warning Signs, especially on spots with night visibility
issues.

Chevrons

Any curve/turn with a history of roadway departure crashes or with
similar geometry or traffic volume yet to experience crashes.

Raised Pavement Markers

Any route with sufficient pavement quality to hold the devices in
place.

Edge Lines & Center Line
Rumble Strips

Roads with a history of road departure and head-on crashes.

Safety Edge

Locations where pavement edge drop-offs occur through everyday
use, particularly on rural roads with unpaved shoulders. Policies
and procedures subject to each State.
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