CONNECTED VEHICLE DEPLOYMENT IN ADA COUNTY, IDAHO: LESSONS LEARNED

AHMED ABDEL-RAHIM
NATIONAL INSTITUTE FOR ADVANCED TRANSPORTATION TECHNOLOGY
UNIVERSITY OF IDAHO

2018 REGION 10 TRANSPORTATION CONFERENCE
OCTOBER 12TH, 2018 FAIRBANKS, AK
PROJECT OVERVIEW

FIELD EVALUATION OF V2I CONNECTED VEHICLE DEPLOYMENT IN ADA COUNTY, IDAHO - VALIDATING COMMUNICATION ARCHITECTURE AND CONTROL TECHNOLOGY READINESS

- Traffic signal system V2I and I2V data exchange
- Connected Vehicle–based priority for vehicles at signalized intersection approaches

Treasure Valley
SMART Arterial Management
Advanced Transportation & Congestion Management Technologies Deployment Initiative
USDOT Funding # 693J317NF0001
OVERVIEW: CONNECTED VEHICLE VS. AUTONOMOUS VEHICLES

WHAT IS THE DIFFERENCE?

SAE AUTOMATION LEVELS

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Automation. The full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems.</td>
</tr>
<tr>
<td>1</td>
<td>Driver Assistance. The driving-mode-specific execution by a driver assistance system of either steering or acceleration/ deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task.</td>
</tr>
<tr>
<td>2</td>
<td>Partial Automation. The driving-mode-specific execution by one or more driver assistance systems of both steering or acceleration/ deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task.</td>
</tr>
<tr>
<td>3</td>
<td>Conditional Automation. The driving-mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene.</td>
</tr>
<tr>
<td>4</td>
<td>High Automation. The driving-mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene.</td>
</tr>
<tr>
<td>5</td>
<td>Full Automation. The full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver.</td>
</tr>
</tbody>
</table>

Fully Autonomous Intersections

V2V, V2I, I2V, I2X, X2V, V2X
CONNECTED VEHICLES – CURRENT IMPLEMENTATION STATUS

Planned and Operational Connected Vehicle Deployments
Where Infrastructure and In-Vehicle Units are Planned or In Use

- Planned Projects
- Operational Projects

*Projects shown include those sponsored by U.S. DOT and others.
**Device numbers for many of the planned projects are currently unavailable.

<table>
<thead>
<tr>
<th>Operational (52 Projects)*</th>
<th>Planned (23 projects)**</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure Units</td>
<td>2,044</td>
<td>2,286</td>
</tr>
<tr>
<td>In-Vehicle Units</td>
<td>3,340</td>
<td>3,340</td>
</tr>
</tbody>
</table>
CONNECTED VEHICLE TERMINOLOGIES

- V2I/V2V/V2X
 - Vehicle-to-Infrastructure, Vehicle-to-Vehicle, Vehicle-to-Everything

- DSRC – Dedicated Short Range Communications
 - Standards document: IEEE 802.11p (lower layer)
 - Defines the data link and physical layer of V2X communications
 - Operates on 75 MHz spectrum of 5.9GHz band (5.850-5.925GHz, 7 channels)

- WAVE – Wireless Access in Vehicle Environments
 - Standards document: IEEE 1609 (upper layer)
 - Defines the architecture, communications model, management structure, and security access
CONNECTED VEHICLE TERMINOLOGIES

• RSU/RSE – Road Side Unit / Road Side Equipment
 • RSU – Infrastructure DSRC radio module
 • RSE – RSU plus supporting equipment
 • Specified by WAVE and USDOT RSU Specifications 4.1
 • Messages defined by SAE J2735
 • Installed at intersection
 • Connected to traffic controller via Ethernet

• OBU/OBE – On Board Unit / On Board Equipment
 • OBU – Vehicle DSRC radio module
 • OBE – OBU plus supporting equipment
 • Specified by WAVE; Messages defined by SAE J2735
 • Installed in vehicle
 • Connected to vehicle ECU via CAN, mobile device via Wi-Fi, infotainment via Ethernet
CONNECTED VEHICLE J2735 MESSAGE TYPES

- **SPAT – Signal Phase and Timing**
 - Current phase status of intersection,
 - Includes intersection status, i.e. MCE, stop time, flash, PMT active, TSP active
 - Used in conjunction with MAP
 - RSU transmits ten SPAT messages per second to OBU

- **MAP – Map Data**
 - Geographic road information based on GPS coordinates
 - Includes lane geometry and descriptions/attributes (including phase assignments)
 - RSU transmits one MAP message per second to OBU

- **BSM – Basic Safety Message**
 - Positional info, speed, heading, transmission state, steering wheel angle, acceleration, brake status, and size of vehicle
 - OBU transmits ten BSMs every second
CONNECTED VEHICLE J2735 MESSAGE TYPES

- TIM – Traveler Information Message
 - Sends traveler advisories (incl. traffic information, traffic incidents, major events, evacuations, etc.) and (static) road signs to OBU from RSU

- RTCM – Radio Technical Commission For Maritime Services
 - Provides differential corrections for GPS to increase absolute and relative accuracy

- SRM – Signal Request Message
 - Sent by OBU to RSU to view current status of signals
 - Can be used for preemption or priority signal requests

- SSM – Signal Status Message
 - Sent by RSU in response to SRM
 - Current status of signals and pending/active/denied preemption or priority requests
 - Both SRM and SSM function similar to SPAT with the addition of acknowledgement
CONNECTED VEHICLE TRAFFIC SIGNAL SYSTEM ARCHITECTURE

SPaT: Signal Phase and Timing
MAP: Intersection Geometry Map
BSM: Basic Safety Message
DSRC: Dedicated Short Range Communications
RSU: Road Side Unit
OBU: On Board Unit
ADA COUNTY CONNECTED VEHICLE TEST
FOUR INTERSECTIONS – FOUR RSU VENDORS

Major Issues -- Lessons
• Traffic Controllers/RSUs Compatibility
• Initial Installation/Setup process
• GPS accuracy and availability
• Connected vehicle control logic (what to do with all these data) -- RSU role?
• RSU/OBS Data Exchange “stability”
• Cyber Security (jamming)
RSU/OBU Data Exchange - Example

<table>
<thead>
<tr>
<th>Time</th>
<th>Total Elapsed</th>
<th>Δelapsed (Interval)</th>
<th>ΔTx RSU</th>
<th>ΔRx OBU</th>
<th>ΔTx OBU</th>
<th>ΔRx RSU</th>
<th>ΔRx OBU Dropped</th>
<th>ΔRx RSU Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:06 AM</td>
<td>4 mins</td>
<td>4 mins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:10 AM</td>
<td>7 mins</td>
<td>3 mins</td>
<td>51</td>
<td>51</td>
<td>2556</td>
<td>2556</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10:13 AM</td>
<td>10 mins</td>
<td>3 mins</td>
<td>22</td>
<td>22</td>
<td>1104</td>
<td>1104</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10:16 AM</td>
<td>12 mins</td>
<td>2 mins</td>
<td>41</td>
<td>41</td>
<td>2081</td>
<td>2081</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11:05 AM</td>
<td>59 mins</td>
<td>47 mins</td>
<td>17</td>
<td>17</td>
<td>839</td>
<td>839</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11:08 AM</td>
<td>1 hr 2 mins</td>
<td>3 mins</td>
<td>585</td>
<td>398</td>
<td>29550</td>
<td>28974</td>
<td>187 (32%)</td>
<td>576 (2%)</td>
</tr>
<tr>
<td>11:11 AM</td>
<td>1 hr 5 mins</td>
<td>3 mins</td>
<td>30</td>
<td>0</td>
<td>1520</td>
<td>441</td>
<td>30 (100%)</td>
<td>1079 (71%)</td>
</tr>
<tr>
<td>11:14 AM</td>
<td>1 hr 8 mins</td>
<td>3 mins</td>
<td>37</td>
<td>0</td>
<td>1901</td>
<td>160</td>
<td>37 (100%)</td>
<td>1741 (92%)</td>
</tr>
<tr>
<td>12:37 PM</td>
<td>2 hr 31 mins</td>
<td>1 hr 23 mins</td>
<td>28</td>
<td>0</td>
<td>1423</td>
<td>114</td>
<td>28 (100%)</td>
<td>1309 (92%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Total Elapsed</th>
<th>Δelapsed (Interval)</th>
<th>ΔTx RSU</th>
<th>ΔRx OBU</th>
<th>ΔTx OBU</th>
<th>ΔRx RSU</th>
<th>ΔRx OBU Dropped</th>
<th>ΔRx RSU Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:05 AM</td>
<td>59 mins</td>
<td>47 mins</td>
<td>17</td>
<td>17</td>
<td>839</td>
<td>839</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11:08 AM</td>
<td>1 hr 2 mins</td>
<td>3 mins</td>
<td>585</td>
<td>398</td>
<td>29550</td>
<td>28974</td>
<td>187 (32%)</td>
<td>576 (2%)</td>
</tr>
<tr>
<td>11:11 AM</td>
<td>1 hr 5 mins</td>
<td>3 mins</td>
<td>30</td>
<td>0</td>
<td>1520</td>
<td>441</td>
<td>30 (100%)</td>
<td>1079 (71%)</td>
</tr>
<tr>
<td>11:14 AM</td>
<td>1 hr 8 mins</td>
<td>3 mins</td>
<td>37</td>
<td>0</td>
<td>1901</td>
<td>160</td>
<td>37 (100%)</td>
<td>1741 (92%)</td>
</tr>
<tr>
<td>12:37 PM</td>
<td>2 hr 31 mins</td>
<td>1 hr 23 mins</td>
<td>28</td>
<td>0</td>
<td>1423</td>
<td>114</td>
<td>28 (100%)</td>
<td>1309 (92%)</td>
</tr>
</tbody>
</table>

Time Data
- **10:06 AM**
- **10:10 AM**
- **10:13 AM**
- **10:16 AM**
- **10:18 AM**
- **11:05 AM**
- **11:08 AM**
- **11:11 AM**
- **11:14 AM**
- **12:37 PM**

Packets TX/RX in-between intervals
- ΔTx RSU
- ΔRx OBU
- ΔTx OBU
- ΔRx RSU

Packets dropped in-between intervals
- ΔRx OBU Dropped
- ΔRx RSU Dropped
SECURITY OF BSM DATA EXCHANGE
THANK YOU

Questions