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EXECUTIVE SUMMARY 

This report documents the research activities completed to investigate the traffic crashes in Rural, 
Isolated, Tribal, or Indigenous (RITI) communities involving considerable incapacitating injuries and 
losses. The traffic crashes occurring in RITI communities are related more to the features like speeding, 
low safety devices application (for instance, seatbelt), adverse climate and weather conditions and 
lacking maintenance and repairs for road conditions, and inferior lighting conditions than urban crashes. 
Thus, it is necessary to study the properties and attributes of traffic crashes in the RITI areas using 
statistical methods and data-driven methods. Unfortunately, there exists not only the unobserved 
heterogeneities but also the temporal instability in traditional crash data analysis. 

To solve this problem, the project analyzed the rural crash injury and fatality patterns caused by 
changing climates in RITI communities based on enhanced data analysis using latest mathematical 
methods. The mixed logit model (MLM) used to examine the risk factors in determining driver injury 
severity in four crash configurations in two-vehicle rear-end crashes on state roads was based on seven-
years of data from the Washington State Department of Transportation. The dataset only includes 
collisions with passenger cars and pickup trucks involved. These vehicles are the most common in these 
crashes, and the two types typically have different heights and masses. Four crash configurations are 
examined concerning the type of the vehicles and their relative position in a crash. Four models for 
these configurations and a model for the overall dataset are estimated. In addition, this project 
developed a latent class mixed logit model (LCM) with temporal indicators to investigate highway single-
vehicle crashes and the effects of significant contributing factors to driver injury severity. The 
differences between the MLM and the LCM are investigated for exploring the relationships between 
driver injury severity in the rain-related rural single-vehicle crash and its corresponding risk factors.  The 
results of this research will be beneficial to transportation agencies to propose effective methods to 
improve rural crash severities under special climate and weather conditions and minimize the rural 
crash risks and severities. 

Due to limited visibility and low skid resistance on the road surface, single-vehicle crashes in rain, 
especially those that occurred in rural areas, are more likely to result in driver incapacitating injuries and 
fatalities. A three-year crash dataset including all rural single-vehicle crashes under rainy conditions 
from 2012 to 2014 in four South Central states, i.e., Texas, Arkansas, Oklahoma, and Louisiana, was 
selected in this paper to analyze the impact factors on driver injury severity. The MLM and LCM are 
developed on the same dataset. Several parsimony indices, e.g., the Akaike information criterion (AIC) 
and the Bayesian information criterion (BIC), and as well as McFadden pseudo r-squared, are calculated 
for all the models to evaluate their respective performance. Results show that choosing the uniform 
distribution as the prior for random parameters improves the goodness-of-fit of the MLM more than 
using normal and lognormal distributions. In addition, the two-class LCM also shows superiority when 
compared to three- and four-class LCMs. Finally, a careful comparison between these two models is 
conducted, and the results indicate that the LCM has a slightly better performance in analyzing the 
aforementioned dataset in this study.  
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CHAPTER 1. INTRODUCTION 

1.1. Problem Statement 

Statistical data indicates that more than 50% of fatalities in crashes occurred on rural roadways, 
resulting in more than 20,000 people losing their lives annually. Rural crashes also cause considerable 
incapacitating injuries and losses in rural, isolated, tribal, or indigenous (RITI) communities. The fatality 
rate in rural areas is double the rate in urban areas in the US Department of Transportation (USDOT) 
2013 National Highway Traffic Safety Administration (NHTSA) report. The Hawaii Department of 
Transportation (HDOT) also reported that the rural area fatality rate is 195% larger than that in the 
urban areas in 2014.  

The traffic crashes occurring in RITI communities are different from urban traffic crashes. Many 
significant impact factors, including speeding, low safety device use (for instance, seatbelt), adverse 
weather conditions and lacking maintenance and repairs for road conditions, and inferior lighting 
conditions, contribute to more severe crashes in RITI communities. Thus, it is necessary to study the 
properties and attributes of traffic crashes in the RITI areas using data analysis methods, such as 
statistical methods, and data-driven methods. Unfortunately, few studies have been conducted to 
address unobserved heterogeneity and temporal instability issues in traditional crash analyses.  

To address the research gap, the project aimed to: 1) Employ the mixed logit model (MLM) to examine 
the risk factors in determining driver injury severity in four crash configurations in two-vehicle rear-end 
crashes on state roads based on seven-years of data from the Washington State Department of 
Transportation; 2) Develop a latent class mixed logit model (LCM) with temporal indicators to 
investigate highway single-vehicle crashes and the effects of significant contributing factors to driver 
injury severity; and 3) Investigate the differences between the MLM and the LCM for exploring the 
relationships between driver injury severity in the rain-related rural single-vehicle crash and its 
corresponding risk factors.  

The research enables effective traffic safety program management at all levels in RITI communities by 
aiding in the design and implementation of appropriate countermeasures to mitigate rural crash 
severities and risks. Weather conditions are identified as a significant impact factor which indirectly 
reflects climate change impacts on crash outcomes and injury severity. The updated crash data platform 
will provide more interesting functions, and the Bayesian approach and finite mixture random 
parameter models make fundamental contributions to the crash data analysis in RITI communities. 

The analytical results of the rural crash data records will greatly facilitate active countermeasure 
development to minimize crash risks and severities in RITI communities. To our best knowledge, based 
on a thorough literature search, there is no existing literature focusing on investigating the driver injury 
severity patterns in low-visibility-related crashes considering finite mixture random effects, and on 
interpreting with missing values, which motivated us to conduct fundamental methodological analysis 
for rural crash characteristics in RITI communities. 

1.2. Research Objectives 

This project aimed at developing a variety of statistical models to analyze the specific types of traffic 
crashes, extracting the critical factors causing them, and proposing a novel finite mixture random 
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parameter model for driver injury severity analysis in RITI communities. Towards this goal, the research 
objectives were as follows: 

• Finding a statistical model to examine the risk factors in determining driver injury severity in 
four crash configurations in two-vehicle rear-end crashes on state roads based on seven-years 
of data from the Washington State Department of Transportation. 

• Investigating highway single-vehicle crashes and the effects of significant contributing factors 
to driver injury severity.  

• Analyzing the differences between the MLM and the LCM in exploring the relationships 
between driver injury severity in the rain-related rural single-vehicle crash and its 
corresponding risk factors. 

1.3. Report Organization  

The remainder of this report is organized in the following manner. Chapter 2 presents a comprehensive 
review of previous studies that are relevant to this study, including studies focusing on crash modeling, 
characteristics in crash modeling, and other critical issues, such as temporal instability and missing data. 
Chapter 3 employs the mixed logit model to examine the risk factors in determining driver injury 
severity in four crash configurations in two-vehicle rear-end crashes on state roads based on seven-
years of data from the Washington State Department of Transportation. Chapter 4 develops a latent 
class mixed logit model with temporal indicators to investigate highway single-vehicle crashes and the 
effects of significant contributing factors to driver injury severity. Chapter 5 investigates the difference 
between the MLM and the LCM for exploring the relationships between driver injury severity in the rain-
related rural single-vehicle crash and its corresponding risk factors. Finally, Chapter 6 presents the 
conclusion of this research and the recommendations for future research.    
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CHAPTER 2. LITERATURE REVIEW 

2.1. Generic Crash Severity Modeling and Analysis 

Many studies have pointed out the distinct mechanisms between single-vehicle and multi-vehicle 
crashes and the corresponding different relevant factors in determining severity level (Ivan et al., 1999; 
Geedipally & Lord, 2010; Yu et al., 2013a; Yu & Abdel-Aty, 2013; Wu et al., 2014; Dong et al., 2018; Chen 
& Chen, 2011). For example, by comparing the impacts of single and multi-vehicle crashes, Dong et al. 
(2018) found that relevant factors for injury in multi-vehicles crashes include being a weekend, speed 
limits, traffic volume, number of trucks involved, wet road surface, and even the month of the year, but 
visibility is the only factor for injury for single-vehicle crashes. Furthermore, among all the multi-vehicle 
crashes, two-vehicle (2V) crashes are the most common (NHTSA, 2019). Through a detailed analysis, 
Kitali et al. (2021) verified the necessity to model 2V and more than two-vehicle crashes separately 
because of their different contributing factors. Their results suggest that disaggregating 2V and other 
multi-vehicle crashes while allowing correlation best describes their data. In a rear-end collision, where 
a neck injury is easily caused by the sudden acceleration of the body with respect to the brain, the driver 
in the leading vehicle is found to be more severely injured in 2V crashes, whereas the driver in the 
middle car is more severely injured in three-vehicle-involved crashes (Khattak, 2001; Yasmin, 2014). The 
critical factors in 2V crashes have been determined for different circumstances. For example, the 
driver's age, vehicle type, alcohol use, intersection, and lighting conditions were found to be key risk 
factors at signalized intersections in Taipei City (Chiou et al., 2013); female drivers, older (≥65 years) 
drivers, unbuckled drivers, speeding drivers and drivers in lighter and older vehicles suffer higher injury 
risks in 2V crashes (Gong et al., 2021). Generally, vehicle types play an important role in influencing the 
severity of injuries. The size of the vehicle can control the visibility of the following cars, and the 
vehicle's mass changes the degree of the vehicle's sudden acceleration, causing injury (Abdel-Aty, 2003; 
Erbulut, 2014). Motorcycles or trucks lead to more severe driver injuries and fatalities in multi-vehicle 
crashes (Wu et al., 2014). Vehicles with larger mass, such as vans, pickup trucks, and station wagon cars, 
tend to have less severe injuries in a rear-end crash (Khattak, 2001). Abdel-Aty & Abdelwahab (2003) 
considers crashes involving only light truck vehicles and passenger cars and the four configurations in 
the rear-end crashes based on the types of leading and following vehicles. They analyze the key factors 
to determine the type of configuration. For example, their results indicate that driver distraction and 
limited sight distance predicted the crash was caused by a regular passenger car following a light truck. 
Their results reveal that each configuration is associated with a different mechanism. This motivates our 
research to further study the critical factors in determining the crash severity level of the 2V rear-end 
crashes in these four configurations, respectively, with unobservable heterogeneity also considered. 
Rear-end crashes are the second most common crash type, right behind head-on crashes, and passenger 
cars and light trucks are involved in more than 50% of rear-end crashes (NHTSA, 2019).  

For the severity analysis, the multinomial logit (MNL) method and multinomial probit method are widely 
used (Train, 2009; McFadden,1981; Lee & Mannering, 2002; Shankar & Mannering,1996; Mannering & 
Bhat, 2014) as well as ordered logit and ordered probit (Chiou et al., 2013; Yamamoto & Shankar,  2014; 
Chen et al., 2016; Greene, 2012; McCullagh,1980). To address the heterogeneity of the factors to be 
analyzed, the mixed MNL method, Latent Class MNL method are developed (Haleem & Gan, 2013; Wu 
et al., 2014; Ye & Lord, 2011; Mannering & Bhat, 2014). As a general statistical model, Mixed MNL can 
approximate any random utility model with the heterogeneity among individuals, time, and correction 

https://www.sciencedirect.com/science/article/pii/S000145750300126X#!
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between alternatives (Train, 2009; McFadden & Train, 2000). Risk factors in specific circumstances are 
usually identified by comparing those results to results from the other circumstance. For example, the 
risk factors unique to large trucks were determined by MNL models developed for truck- and non-truck-
involved accidents, respectively (Chang & Mannering, 1999). Wu et al. (2016) used the MNL model to 
explore the characteristic differences between teenage and adult drivers in intersection-related crashes. 
They found relevant factors of alcohol, driving technique, and seat belt usage have a significant 
difference between these two groups. Yu et al. (2020) built mixed MNL models for snow and other 
weather conditions to compare the different impacts and found that gender and sobriety have 
significantly higher pseudo-elasticity effects under snow weather than the other weather conditions in 
rural single-vehicle crashes. Behnood et al. (2014) adopted the Latent class MNL model and examined 
the differences in driver-injury severity between drivers impaired and not-alcohol-impaired and found 
substantial differences across age/gender groups in the absence/presence of alcohol. Behnood et al. 
(2017) used the MNL model with heterogeneity. They found that the different combinations of driver 
and passenger's age and gender affect the severity levels in single-vehicle crashes. In Ulfarsson & 
Mannering (2004), separate multivariate multinomial logit models of injury severity were estimated for 
male and female drivers.  

Compared with urban areas, rural areas have more fatal traffic crashes and fatalities. NHTSA revealed 
that rural areas held only 19% of the total U.S. population but induced 48% of fatal traffic crashes and 
49% of traffic fatalities in 2015 (NHTSA, 2017). Therefore, rural traffic crashes have drawn worldwide 
research interest (Islam and Brown, 2017; Rusli et al., 2017; Wang et al., 2017). Similarly, single-vehicle 
crashes are also found to be more fatality-concentrate than multi-vehicle crashes, as was evidenced by 
the fact that single-vehicle crashes accounted for 28.9% of all crashes, but 58.1% of all fatal crashes in 
the U.S. in 2015 (NHTSA, 2017). Given these two fatality-concentrated features of rural crashes and 
single-vehicle crashes, it is of particular interest to investigate the injury severity patterns in rural single-
vehicle crashes, a sub-crash type that belongs to both these two fatality-concentrated crash types. Injury 
severity in traffic crashes is an indispensable research area in crash data analysis, in addition to crash 
frequency analysis, and driver injury severity has been widely used as a representative indicator at the 
individual level (Behnood and Mannering, 2017; Chen et al., 2016b, 2015a; Seraneeprakarn et al., 2017). 
Numerous studies have already been conducted to investigate the contributing factors and propose 
effective countermeasures to mitigate driver injury severity in traffic crashes (Chang and Chien, 2013; 
Chen et al., 2016c, 2015a; Kim et al., 2013; Wu et al., 2014).  

Previous studies showed that driving in the rain may be associated with higher crash risk than that in 
clear weather (Jung et al., 2010). A sizable portion of severe traffic crashes is brought about by these 
issues and induces significant fatalities and serious injuries. According to the Texas Department of 
Transportation (TxDOT, 2016), 16,818 rural crashes (159 fatal crashes) occurred under rain conditions in 
2015, which is four times as many as those related to all other inclement weather conditions (e.g., 
blowing sand, sleet, and hail). In addition, crash statistics from Arkansas and Oklahoma (Arkansas 
Department of Transportation, 2015; Oklahoma Department of Transportation, 2015) showed that 
single-vehicle crashes under rain conditions, especially those occurring in rural areas, have a probability 
of drivers being seriously injured approximately twice as high as that for multi-vehicle crashes occurring 
under the same or similar conditions. However, in most traffic safety studies, weather conditions have 
been considered as a contributing factor in crash cause-effect analysis, and only a limited number of 
studies directly focused on crashes under rain conditions. Andrey and Yagar (1993) analyzed the crash 
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risk during and after rain events in urban areas and discovered that the overall crash risk under rain 
conditions is 70% higher than that in average-day clear conditions. Jung et al. (2010) developed two 
types of polychotomous response models to analyze rain-related crashes in Wisconsin and concluded 
that rain-related factors could significantly affect injury severity. However, the safety impacts of rain and 
other variables in rain-related crashes are found to be unstable among different studies. For instance, a 
study examining the temporal and spatial distribution of rain-related crashes in Texas suggested that 
rain is a contributor to fatal crashes only in a few dry counties but has no impacts on crashes in some of 
the wetter counties (Jackson and Sharif, 2014). Qiu and Nixon (2008) reported that rain is associated 
with higher injury severity and crash rates. Feng et al. (2016) concluded that severe accidents are about 
twice more likely to occur on curved roadways on rainy days, although straight and curved roadways 
have similar impacts in clear days. Shaheed et al. (2016) also reported that gender, seating position, 
road junction type, and other risk factors have different effects on injury severity in weather-related 
(rain, snow, blowing sand, etc.) and non-weather-related crashes. Whereas in the article of Lee et al. 
(2015), estimation results showed that injury severity is relatively lower under rain condition in all crash 
types since drivers tend to reduce their speeds and be more careful on a wet surface. The sophisticated 
influences of rain on overall traffic safety indicate that there is a need for detailed analyses regarding 
external weather conditions and collision types.  
 
In contemporary traffic safety research, unobserved heterogeneity of the police-reported crash dataset 
has been recognized as a critical issue (Mannering et al., 2016; Mannering and Bhat, 2014). In this study, 
the dataset was obtained from a representative sample of police-reported motor vehicle crashes with 
discrete injury severity outcomes, where there are still certain elements related to crashes not recorded 
and remaining unobserved to researchers, even though many elements (e.g., driver age, gender, 
number of lines of a roadway, etc.) have been covered. Traditional models that are usually used in traffic 
crash data analysis, e.g., multinomial logit model (MNL), ordered logit model, etc., cannot adequately 
address the unobserved heterogeneity within such dataset. Therefore, models that can account for 
unobserved heterogeneity should be developed. One of the first practices on unobserved heterogeneity 
model was a study by Kim et al. (2008), where they developed a mixed logit model (MLM) to investigate 
the effect of driver age on driver injury severity outcome in single-vehicle crashes. A further study on 
driver injury severity also conducted by Kim et al. (2013) demonstrated that MLMs are superior to 
traditional discrete choice models in that they are more flexible and can approximate any random utility 
model. Wu et al. (2014) developed MLMs to analyze driver injury severities in single-vehicle crashes and 
compared the results with multi-vehicle crashes. Noticeably, elasticity analyses and transferability tests 
were applied to discuss the models’ parameters estimation outcomes, and the results showed that 
elasticity analysis is a necessary supplement to MLMs. The MLM can account for individual unobserved 
heterogeneity by allowing parameters to vary across observations and therefore yield more reliable 
estimations (Kim et al., 2013; Milton et al., 2008; Moore et al., 2011). It should be mentioned that some 
recent studies tried to explicitly examine the possible heterogeneity in means and/or variance. For 
instance, Behnood and Mannering (2017) adopted an MLM with heterogeneity in parameter means to 
explore the differences in driver-injury severities. Seraneeprakarn et al. (2017) developed an MLM of 
injury severity while allowing for heterogeneity in parameter means and variances. Models with no 
mean-variance related heterogeneity, and with mean related heterogeneity only, are also developed 
and compared with the proposed model. The estimation results showed that for their dataset, the 
proposed model has better performance over the other two, and some variables were found to 
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randomly distributed with significant heterogeneity in both means and variances. Interested readers are 
referred to these papers and the references cited therein. However, this model also has its own 
drawbacks. Due to its flexible structure, the MLM requires appropriate distribution assumptions for 
potential random parameters; otherwise, these random effects may remain undetected. This restriction 
is released in another widely used method, the latent class model (LCM), where specific distributions for 
parameters of interest are not required. Instead, determining a proper number of classes becomes a 
critical step when using this approach. The unobserved heterogeneity is then identified by these 
different classes with homogeneous characteristics of the within-class observations (Gelman and Hill, 
2007; Ma et al., 2016; Mannering et al., 2016). Xie et al. (2012) developed the LCM to deal with the 
single-vehicle crashes, and concluded that the LCM has the potential to overcome the problems 
associated with the irrelevant alternatives (IIA) property that commonly exists in multinomial logit 
models (Abdel-Aty, 2003). Both MLMs and LCMs were developed on a pedestrian-injury dataset to 
ensure reliable estimation, and the results showed that both models are appropriate to capture 
unobserved heterogeneity (Behnood and Mannering, 2016). However, there are only a few references 
that have directly compared the MLM and the LCM for driver injury severity analysis, and the 
comparison is not always comprehensive. For instance, Cerwick et al. (2014) compared the two models 
by their model fit, inferences, and predicted crash severity outcome probabilities by a large sample of 
crash data on multiple vehicle crashes. Behnood and Mannering (2016) developed both the MLM and 
the LCM to study the risk factors on the pedestrian crash dataset from Chicago city. However, most of 
the previous studies did not explicitly conclude which model is superior to the other.  
 
Another issue in traffic safety analysis is that analysts always aggregated the crash data over a specified 
time period to gather sufficient observations for analyzing. However, some recent research suggests 
that the impact of factors affecting injury severity may not be temporally stable (Behnood and 
Mannering, 2015; Mannering, 2018). In our dataset, the proportion of different types of crashes each 
year is not constant. The occurrence of rain-related crashes may have relationships with the weather or 
even climate change, both of which are virtually impossible to measure with existing data sources. In 
addition, another potential problem is the fact that driver involved in rain-related crashes may be a non-
random sample since safer drivers may choose to take other modes of travel due to compromised road 
friction and visibility. Ignoring possible temporal effects may adversely affect the inferences drawn from 
model estimations as well as their ability to be used to forecast and evaluate the effects of safety 
countermeasures (Mannering, 2018). However, both MLM and LCM are not able to explicitly distinguish 
that the unobserved heterogeneity revealed by these models are entirely due to temporal instability, or 
a combination of temporal shifts and other traditional sources of unobserved heterogeneity. An article 
by Behnood and Mannering (2016) provided some insightful technique details to determine whether 
there exists temporary instability or not in the estimates of unobserved heterogeneity models. A series 
of likelihood ratio tests were conducted to compare models developed for two time periods and 
examine if the parameter estimates are stable between these periods. This technique is also adopted in 
this study for the aim of temporal stability testing and model comparison of the MLM and the LCM. 

2.2. Random Parameters Models in Traffic Crash Analyses 

Single-vehicle crashes pose increasing challenges in traffic safety.  For instance, from 2015 to 2016, 
fatalities in single-vehicle crashes increased by 1180, a 5.9% national-wide increase (National Highway 
Traffic Safety Administration, 2017). In addition, in 2017, there were 11109 fatalities caused by single-
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vehicle crashes national-wide, accounting for 46.5% of all crash fatalities according to Insurance Institute 
for Highway Safety statistics (2017). Factors affecting the severity of single-vehicle crashes, such as crash 
exposures, road geometries, and driver features, have been explored extensively in previous studies 
(Behnood and Mannering, 2015; Gong and Fan, 2017; Kim et al., 2013; Lee and Mannering, 2002; Lee 
and Li, 2014; Li et al., 2018b; Savolainen and Mannering, 2007; Shaheed and Gkritza, 2014; Wu et al., 
2016b; Xie et al., 2012; Yu and Abdel-Aty, 2013). For example, Lee and Mannering (2002) modelled the 
severity of run-off-road crashes using a nested-logit model considering a combination of temporal 
indicators, driver status, environmental characteristics, and roadway conditions. Xie et al. (2012) 
investigated the impact factors for rural single-vehicle crashes via a latent-class logit model. Compared to 
Lee and Mannering (2002), additional information such as crash types, lighting conditions, and in-vehicle 
protections, were involved in Xie’s model (2012). Kim et al. (2013) proposed a random parameter logit 
model to analyze unobserved heterogeneous effects of drivers’ age and gender on injury severities in 
single vehicle crashes.  

In the past few years, unobserved heterogeneity received growing concerns. Note that a great part of 
factors affecting crash severity are not available in post-crash observation, such as the mental status of 
deceased drivers, or not included in crash record, such as dynamic traffic flow conditions. Unobserved 
factors are correlated with both the crash outcome and observed factors. These factors thus lead to 
potential variations in the impacts of observed ones on crash severity, which constitute unobserved 
heterogeneity (Mannering et al., 2016). Random parameters approaches and their variants, such as 
random parameters model (Kim et al., 2013; Li et al., 2019b; Wu et al., 2016b), random parameters 
ordered probability models (Eluru et al., 2008; Fountas et al., 2018), latent class models with random 
parameters within classes (Li et al., 2018b; Liu and Sharma, 2018), and mixed logit models with 
heterogeneity in means and variances (Alnawmasi and Mannering, 2019), have been the most 
frequently used methods in coping with the unobserved heterogeneity in crash severity analysis (see 
Mannering et al. (2016)). 

Moreover, it is commonly understood that researchers employed crash records collected in multiple years 
in their studies in order to obtain a large enough sample size (Elvik, 2008; Washington et al., 2010; Yu et 
al., 2014). Statistical analysis was then applied on the multi-year dataset to investigate the impacts of 
various factors on crash severities. In most of these studies, it was implicitly assumed that the effects of 
the statistically identified factors are constant over time, i.e., temporally stable (Lord and Mannering, 
2010; Mannering and Bhat, 2014; Mannering, 2018). However, several studies found that the impacts of 
factors on injury severity of highway crashes may vary over time. For instance, Wu et al. (2016b) tested 
the temporal transferability of their model using crash data collected in different years. The test results 
indicated that the transferability of estimated parameters was rejected at a significance level of 0.001, 
indicating there existed a temporal instability issue in the dataset. In a Markov switching model 
proposed by Xiong et al. (2014), evidence supporting temporal instability was found via allowing varying 
random parameters to be time dependent. Similar findings were also supported by works of Wu et al. 
(2016a) and Venkataraman et al. (2016). With respect to individual-specified crash records in a 
sufficiently long period, not only the observed explanatory variables associated with crash severity may 
change, but also the unobserved factors, such as individuals’ cognitive biases, attitudes and behavior 
patterns, can evolve over time (Mannering, 2018). Ignoring possible temporal effects in crash severity 
analysis could adversely affect the inferences drawn from model estimation. Interested readers are 
referred to the article of Mannering (2018) and references cited therein for a comprehensive discussion 
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of temporal considerations. Besides the numerical evidences provided in studies mentioned above, 
temporal instability has also been addressed in many crash studies by accommodating temporal 
correlations in different forms, such as temporal indicator in linear explanatory variables (Holdridge et 
al., 2005; Lee and Mannering, 2002; Sze and Wong, 2007; Cerwick et al., 2014), autoregressive 
correlation structure (Huang et al., 2009; Wang et al., 2006), time-varying intercepts (Cheng et al., 2017) 
and temporal structures in random effects (Li et al., 2019a; Liu and Sharma, 2018; Zeng et al., 2018). 
However, when it comes to the driver injury severity analysis domain, limited efforts have been 
conducted to investigate temporal instability of various impact factors, i.e., crash injury severity analysis 
allowing time-varying interactions among variables. 

2.3. Summary 

Recent studies on crash modeling, impact factor analyses on crash injury severity, and other critical 
issues in the crash analysis were reviewed in this section. In this study, the project team will employ the 
MLM to examine the risk factors in determining driver injury severity in four crash configurations in two-
vehicle rear-end crashes on state roads based on seven-years of data from the Washington State 
Department of Transportation (WSDOT); develop an LCM with temporal indicators to investigate 
highway single-vehicle crashes and the effects of significant contributing factors to driver injury severity, 
and investigate the differences between the MLM and the LCM for exploring the relationships between 
driver injury severity in the rain-related rural single-vehicle crash and its corresponding risk factors. The 
proposed research enabled effective traffic safety program management at all levels in RITI 
communities to design and implement appropriate countermeasures to mitigate rural crash severities 
and risks. 
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CHAPTER 3. SEVERITY ANALYSIS OF TWO-VEHICLE REAR-END CRASHES OF DIFFERENT 
CONFIGURATIONS BY MIXED LOGIT MODELS 

This chapter of the report employs the mixed logit model (MLM) to examine the risk factors in 
determining driver injury severity in four crash configurations in two-vehicle rear-end crashes on state 
roads based on seven-years of data from the WSDOT. The dataset only includes collisions that involved 
passenger cars and pickup trucks. These vehicles are the most common in these crashes, and the two 
types typically have different heights and masses. Following the configuration analysis by Abdel-Aty & 
Abdelwahab (2003), four MLMs are constructed for four configurations of 2V crashes, crash of two 
passenger cars (PP crash), crash of two pickup trucks (TT crash), a crash of a passenger car followed by a 
pickup truck (PT crash), a crash of a pickup truck followed by a passenger car (TP crash), and for 
comparison purposes, a model of the overall data is also constructed. The impacts of risk factors are 
compared among those five models, and their differences and similarity are addressed in-depth with the 
assistance of the elasticity analysis.  

3.1. Data 

The study is based on a dataset of rear-end 2V crashes by forward-moving passenger cars and pickup 
trucks on urban divided two-way roads extracted from traffic crash records over seven years from 2010 
to 2016 from the Washington State Department of Transportation. In the dataset, the severity is 
classified into three types: no injury (N), injury (I), and fatality (F), where serious injuries and deaths are 
both included in the fatality (F) to maintain a statistically meaningful sample size (Yu et al. 2020). The 
total dataset is divided into four sub-datasets:  PP crash dataset, PT crash dataset, TP crash dataset, and 
TT crash dataset.  

Information on the crashes included in the dataset can be grouped into four categories, including: (1) 
crash information (e.g., driver injury severity category, temporal information, and crash location); (2) 
environmental information (e.g., weather, light conditions, road surface condition, weather condition, 
road characteristics, and indicators for work zone); (3) driver information (e.g., gender, age, seat belt 
usage, license status, insurance, and sobriety conditions); (4) vehicle information (e.g., airbag condition 
and vehicle’s position in a crash). Efforts are devoted to pre-processing the selected crash datasets to 
define dummy variables of binary values, i.e., Yes (1) or No (0), which includes carefully combining 
similar variables and decomposing variables with continuous values into several variables. For instance, 
for driver age, three variables are determined, i.e., Age under 24 (including 24), Age above 65 (including 
65), and Others (Age between 25 and 64) based on practical experience (Chen et al., 2016; Yu et al. 
2020).  

Erroneous or fragmentary data were removed. Finally, there are 23099 2V crash cases, including 8264 
PP crashes, 4148 TT crashes, 3925 PT crashes, and 6762 TP crashes. The PP crashes constitute more than 
1/3 of the total crashes, and TP crashes are slightly less than 1/3, while TT and PT crashes include the 
remaining approximately 1/3 of the total crashes. A detailed statistical description of the selected 
dataset is presented in Table 3-1. 
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Table 3-1 Variable Definitions and Descriptive Statistics of 2V crashes 

Variables Driver’s severity Total % 

 (N) % (I) % (F) %   
PP crashes 14227 86.08% 2470 14.94% 11 0.07% 16528 35.78% 
TT crashes 7159 86.29% 1136 13.69% 1 0.01% 8296 17.96% 
PT crashes 6640 84.59% 1205 15.35% 5 0.06% 7850 17.00% 
TP crashes 11795 87.22% 1723 12.74% 6 0.04% 13524 29.27% 
Week         

Weekday 32543 85.69% 5418 14.27% 15 0.04% 37976 82.20% 
Weekend 7098 86.33% 1116 13.57% 8 0.10% 8222 17.80% 

Season         

Spring 9158 85.93% 1492 14.00% 7 0.07% 10657 23.07% 
Summer 10038 85.26% 1727 14.67% 8 0.07% 11773 25.48% 

Fall 11347 85.69% 1890 14.27% 5 0.04% 13242 28.66% 

Winter 9098 86.43% 1425 13.54% 3 0.03% 10526 22.78% 

Weather         

Clear 23449 85.70% 3901 14.26% 13 0.05% 27363 59.23% 

Unclear 9360 86.65% 1437 13.30% 5 0.05% 10802 23.38% 
Others 6832 85.05% 1196 14.89% 5 0.06% 8033 17.39% 

Surface Condition         

Dry 27438 85.51% 4633 14.44% 15 0.05% 32086 69.45% 

Wet 11736 86.57% 1814 13.38% 7 0.05% 13557 29.35% 

Snow and Ice 289 85.25% 50 14.75% 0 0.00% 339 0.73% 

Others 178 82.41% 37 17.13% 1 0.46% 216 0.47% 
Lightning Condition         

Daylight 28983 86.15% 4646 13.81% 13 0.04% 33642 72.82% 

Dawn and Dust 1966 87.49% 280 12.46% 1 0.04% 2247 4.86% 

Dark with Light 6762 84.84% 1202 15.08% 6 0.08% 7970 17.25% 

Dark without Light 1841 82.59% 385 17.27% 3 0.13% 2229 4.82% 

Others 89 80.91% 21 19.09% 0 0.00% 110 0.24% 
Roadway Characteristics         

Straight and Level 25856 86.37% 4067 13.58% 15 0.05% 29938 64.80% 

Straight but not Level 9824 84.24% 1833 15.72% 5 0.04% 11662 25.24% 

Curve and Level 1432 86.21% 229 13.79% 0 0.00% 1661 3.60% 

Curve but not Level 1652 84.76% 294 15.08% 3 0.15% 1949 4.22% 

Others 877 88.77% 111 11.23% 0 0.00% 988 2.14% 
Work Zone         

Yes 1415 85.29% 243 14.65% 1 0.06% 1659 3.59% 

Gender         
Male 23606 88.68% 3003 11.28% 9 0.03% 26618 57.62% 

Female 15793 81.82% 3495 18.11% 14 0.07% 19302 41.78% 

Others 242 87.05% 36 12.95% 0 0.00% 278 0.60% 

Age         

(0,24]  9776 89.76% 1109 10.18% 6 0.06% 10891 23.57% 

[25,64] 27591 84.64% 4993 15.32% 15 0.05% 32599 70.56% 
[65,100)  2230 83.87% 427 16.06% 2 0.08% 2659 5.76% 

Others 44 89.80% 5 10.20% 0 0.00% 49 0.11% 

Belt Use         

Yes 38900 85.83% 6404 14.13% 19 0.04% 45323 98.11% 

No 138 83.13% 27 16.27% 1 0.60% 166 0.36% 
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Variables Driver’s severity Total % 

 (N) % (I) % (F) %   
Others 0  0  0  0 0.00% 

Sobriety         
Not Drinking 38577 85.83% 6350 14.13% 20 0.04% 44947 97.29% 

HBD Impaired 399 84.71% 71 15.07% 1 0.21% 471 1.02% 

HBD Not Impaired 80 78.43% 22 21.57% 0 0.00% 102 0.22% 

Others 585 86.28% 91 13.42% 2 0.29% 678 1.47% 

License Possession         

Licensed  39190 85.79% 6469 14.16% 23 0.05% 45682 98.88% 
Unlicensed 164 85.86% 27 14.14% 0 0.00% 191 0.41% 

Others 287 88.31% 38 11.69% 0 0.00% 325 0.70% 

Airbag Status         

Airbag Ejected 8 57.14% 6 42.86% 0 0.00% 14 0.03% 

Airbag Not Ejected 39555 85.82% 6511 14.13% 22 0.05% 46088 99.76% 

Others 78 81.25% 17 17.71% 1 1.04% 96 0.21% 
Vehicle Position         

In Front 17197 79.37% 4460 20.58% 10 0.05% 21667 46.90% 

Behind 20527 92.32% 1699 7.64% 8 0.04% 22234 48.13% 

Others 1917 83.46% 375 16.33% 5 0.22% 2297 4.97% 

3.2. Methodology 

3.2.1. MNL model  

In the present study, the mixed MNL models are constructed to quantify the effect of impact factors on 
driver’s injury severity. A hybrid MNL model is developed as follows. The Utility function is defined as  

𝑈𝑈𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑗𝑗 + ∑   𝛽𝛽𝑗𝑗𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘  + 𝜖𝜖𝑖𝑖𝑖𝑖                                                                                                     (3-1) 

 

Where 𝑋𝑋𝑖𝑖𝑖𝑖  is the kth explanatory variable for alternative j and driver i,  𝛽𝛽𝑗𝑗𝑗𝑗 is the coefficients of the 
explanatory variables to be estimated, and 𝜖𝜖𝑖𝑖𝑖𝑖 is the error term which includes the random information. 
Notice that generally, 𝑋𝑋𝑖𝑖𝑖𝑖  can be dependent on choice j but not in this study. The error term is assumed 
to satisfy the Gumbel and type I extreme value distribution (Gumbel, 1958), and its probability density 
function is 

 𝑔𝑔�𝜖𝜖𝑖𝑖𝑖𝑖� = 𝑒𝑒−𝜖𝜖𝑖𝑖𝑖𝑖𝑒𝑒−𝑒𝑒
−𝜖𝜖𝑖𝑖𝑖𝑖 .                                                                                                                                                                          (3-2) 

In our case, the probability of alternative j for individual i is the severity level j of ith driver, where 
j=1,2,3 corresponds to no injury (N), injury (I), and fatality (F), respectively. This probability is 
determined by the Utility Maximization Principle (Train, 2009), i.e.  

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃�𝑈𝑈𝑖𝑖𝑖𝑖 > 𝑈𝑈𝑖𝑖𝑖𝑖�,   ∀𝑘𝑘 ≠ 𝑗𝑗.                                                                                                                                                            (3-3) 

For the basic MNL model, the coefficients 𝛼𝛼𝑗𝑗,  𝛽𝛽𝑗𝑗𝑗𝑗  is assumed constant, and the probability is solved as  

𝑃𝑃𝑖𝑖𝑖𝑖 =  𝑒𝑒𝛼𝛼𝑗𝑗+∑  𝛽𝛽𝑗𝑗𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘

∑ 𝑒𝑒𝛼𝛼𝑗𝑗+∑  𝛽𝛽𝑗𝑗𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘𝑗𝑗
.                                                                                                                                                                                 (3-4) 
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This paper adopts the mixed MNL model, taking that the coefficients 𝛼𝛼𝑗𝑗,  𝛽𝛽𝑗𝑗𝑗𝑗 are random parameters 
instead of describing the driver's unobservable heterogeneities. Therefore, the possibility becomes  

𝑃𝑃𝑖𝑖𝑖𝑖 = ∫ 𝑒𝑒𝛼𝛼𝑗𝑗+∑  𝛽𝛽𝑗𝑗𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘

∑ 𝑒𝑒𝛼𝛼𝑗𝑗+∑  𝛽𝛽𝑗𝑗𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘𝑗𝑗
𝑓𝑓(𝛼𝛼𝑖𝑖𝑖𝑖)∏ 𝑓𝑓(𝛽𝛽𝑗𝑗𝑗𝑗)𝑘𝑘 𝑑𝑑𝑑𝑑,                                                                                (3-5) 

where 𝑓𝑓�𝛽𝛽𝑗𝑗𝑗𝑗� is the density function of 𝛽𝛽𝑗𝑗𝑗𝑗.The coefficients are 𝛼𝛼𝑗𝑗 = 𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗𝛾𝛾𝑗𝑗, 𝛽𝛽𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑗𝑗𝑗𝑗 + 𝑏𝑏𝑗𝑗𝑗𝑗𝛾𝛾𝑗𝑗𝑗𝑗,  and 
the integral is taken over the domain of 𝛼𝛼𝑗𝑗,  𝛽𝛽𝑗𝑗𝑗𝑗  . In (5)  𝑎𝑎𝑗𝑗, 𝑏𝑏𝑗𝑗,𝑎𝑎𝑗𝑗𝑗𝑗 ,𝑏𝑏𝑗𝑗𝑗𝑗 are constant, and 𝛾𝛾𝑗𝑗 , 𝛾𝛾𝑗𝑗𝑗𝑗  are 
random parameters with the density function chosen from four different distributions: Normal 
distribution, Uniform distribution, Triangular distribution, and Exponential distribution. This paper aims 
to determine the best distribution concerning the lowest Akaike information criterion (AIC) value (Akira, 
1974). The coefficients 𝛼𝛼𝑗𝑗,𝛽𝛽𝑗𝑗𝑗𝑗  are estimated by using the maximum likelihood method. In this paper, the 
mixed MNL model is assessed utilizing NLOGIT (v5.0) (Hensher et al., 2005), and simulation with 1000 
Halton draws has been adopted, which is verified to provide a tradeoff between model goodness-of-fit 
and computing efficiency (Bhat, 2003; Train, 2009; Yu et al., 2019). 

3.2.2. Elasticity analysis 

As is noted that the estimated coefficients of models can only interpret the risk factors in a qualitative 
manner (Greene, 2012; Kim et al., 2010). Accordingly, elasticity analysis as a posterior estimation is used 
to evaluate the sensitivity of the probability change concerning the change of the risk variables 
discovered in the mixed MNL models on driver’s injury severity. The elasticity is defined to be 
(Washington et al., 2010) 

𝐸𝐸𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑃𝑃𝑖𝑖𝑖𝑖 = 𝜕𝜕 log𝑃𝑃𝑖𝑖𝑖𝑖

𝜕𝜕 log𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
= 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖

𝑃𝑃𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖

.                                                                                                          (3-6) 

For a basic MNL model, by manipulating (4), it becomes 

𝐸𝐸𝑋𝑋𝑖𝑖𝑖𝑖
𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖 ∑ �𝛿𝛿𝑗𝑗𝑗𝑗 − 𝑃𝑃𝑖𝑖𝑖𝑖�𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 .                                                                                                     (3-7) 

where 𝛿𝛿𝑗𝑗𝑗𝑗 is the Kronecker delta, and the summation is since the value of the observatory variables, in 
this case, are driver-specific, i.e. 𝑋𝑋𝑖𝑖𝑖𝑖  does not depend on severity level j. For the mixed MNL model (3-5), 
the integration is needed 

𝐸𝐸𝑋𝑋𝑖𝑖𝑖𝑖
𝑃𝑃𝑖𝑖𝑖𝑖 = ∫𝑋𝑋𝑖𝑖𝑖𝑖 ∑ �𝛿𝛿𝑗𝑗𝑗𝑗 − 𝑃𝑃𝑖𝑖𝑖𝑖�𝛽𝛽𝑚𝑚𝑚𝑚𝑓𝑓(𝛼𝛼𝑖𝑖𝑖𝑖)∏ 𝑓𝑓(𝛽𝛽𝑗𝑗𝑗𝑗)𝑘𝑘𝑚𝑚  𝑑𝑑𝑑𝑑.                                                               (3-8) 

3.3. Result  

The model estimation is conducted using NLOGIT 5 software. There are, in total, five models constructed 
concerning the PP crashes, TT crashes, PT crashes, TP crashes and overall crashes. Generally, a lower AIC 
value indicates a better model fit on the studied dataset. The elasticity result is also obtained for each 
model.  

3.3.1. Mixed MNL models 

The results for the five models are shown in Table 3-2, respectively. The observable variables with a 
significance level of more than 10% are removed from each list due to their impacts at the level of 
p=0.10. The random variables’ distributions are found by trial and error for all parameters. The 
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candidate distributions are the normal, lognormal, triangular, and uniform distributions, and the final 
selection is determined by the lowest AIC value, except for the PT case. In this case, the Normal 
distribution is finally chosen rather than the triangular distribution because its AIC value is slightly 
higher, and the Normal distribution is more commonly used. The random parameters indicating 
heterogenicity are summarized in Table 3-3. For PP crashes, the random parameter is only for Licensed 
(I) with the triangular distribution; for TT crashes, the teenage drivers show heterogenicity in their driver 
skills, the coefficient of Age under 24 follows the Exponential distribution; in the PT crashes, the 
coefficients of Age under 24 (I) and Daylight (I) are normally distributed; for the TP crashes, the intercept 
and the coefficients of Winter (I), Male (I), Surface Wet (I) are distributed uniformly;  for the overall 
dataset, there are five random coefficients for intercept, Surface wet(I), Straight but not level(I) and 
Airbag not ejected (I) (F). This shows that general crash variables, environment-specific, driver-specific, 
and vehicle-specific variables may be heterogeneous but different configurations. Moreover, key factors 
also differ across these five models. For example, as shown in Table 3-2, the parameter Age above 65 is 
significant for fatality (F) in PP crashes, while in the PT, TP and overall impacts, it is a critical factor for 
injury (I). In TT crashes, it is not essential. This is under the result of (Abdel-Aty & Abdelwahab, 2003), 
which conclude that the senior drivers tend to be a key factor for the PP and PT crashes. Daylight makes 
it safer for all the cases except for the TT crashes. Being the front vehicle is a risk factor of fatality (F) 
only in PT crashes. Surface conditions influence TP crashes the most. There are also similar critical 
factors for all the models: alcohol, whether impaired or not impaired, increases the risk of injury and 
fatality; male drivers reduce the probability of injury in all cases; straight but not level contributes to 
unsafe driving; the vehicle in front directly relates to injury (I). The coefficients can only provide us with 
the qualitative influence of the risk factors. Comparisons will be made using the elasticity results to 
estimate the sensitivity of the probability change concerning the variable evolution. 

Table 3-2 Estimation Result of Mixed MNL Model for five Models 
  PP   TT   PT   TP  Overall 

                

Variable Coef. Std. p  Coef. Std. p  Coef. Std. p  Coef. Std. p  Coef. Std. p  

Constant(P)    2.41*** 0.29     0.00      3.71***       0.11     0.00      2.78***       0.16     1.00      11.33*** 2.27      0.00       11.33*** 2.27      0.00       

Std. Dev          8.77***      2.44      0.00      1.52***               0.26 0.00      

General variables                

Weekday（I）    0.82***       0.10      0.00                

Weekday（F）          -2.12***       0.74     0.00     -0.91**        0.42     0.03   

Fall（F）             -1.25**            -2.16 0.03 

Winter(I) -
0.39*** 

0.14 0.01       -2.72*       1.64     0.10     -0.23*** 0.07    0.00      

Std. Dev          9.87**       4.04      0.01         

Winter(F)             -1.55**       0.66    0.02     

Environment-related variables 

Clear(I)    0.33***       0.08       0.00                

Surface wet(I)          -1.92*** 0.87     0.03     -0.20***       0.06   0.00      

Std. Dev          7.60***      2.68     0.00      7.60***      2.68     0.00      

Daylight(I) -
0.39*** 

0.14 0.01 0.45***       0.09        0.00       -0.52***       0.20     0.01      -0.14          0.26      0.58      -0.35***       0.08    0.00      

Std. Dev       1.26***       0.35      0.00             

Daylight(F)             -1.28***       0.44     0.00     

Dawn and dust(I)       -0.30*         0.18     0.10         -0.48***      0.13  0.00     

Dark without light (I) 0.48** 0.23 0.04 0.72***       0.18       0.00          1.36**       0.58      0.02       0.31*** 0.13      0.01      

Curve and level(I)    0.37**        0.18       0.04               

Straight but not level(I) 0.28** 0.12 0.02 0.34***       0.08       0.00       0.19**        0.09      0.03       0.85***     0.28      0.00       0.24*        0.13      0.06      

Std. Dev             1.43* 0.83      0.09      
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  PP   TT   PT   TP  Overall 

                

Variable Coef. Std. p  Coef. Std. p  Coef. Std. p  Coef. Std. p  Coef. Std. p  

Curve and no level(I)             0.20* 0 .12      0.09      

Curve and no level(F)       2.77***      0.91      0.00          1.26** 0.63     0.05       

Driver-specific variables 

Male(I) -
0.96*** 

0.20 0.00 -.43***       0.07      0.00     -0.56***       0.09     0.00      -3.78***      1.27     0.00     -0.94*** 0.12     0.00     

Std. Dev          8.13***      2.71     0.00         

Male(F)    -4.71***      1.00       0.00          -1.12*** 0.43    0.01   

Age under 24(I) -
0.64*** 

0.16 0.00 -1.68**        0.76       0.03    -0.64*        0.34     0.06     -0.95***       0.29     0.00     -0.42*** 0.07  0.00      

Std. Dev    2.22***       0.69      0.00       1.46***       0.52      0.01             

Age above 65(I)       0.38**        0.16      0.02       1.38***      0.52      0.01       0.23** 0.11    0.03      

Age above 65(F) 1.61** 0.80 0.04             

Belt usage                

No(I) 1.23* 0.66 0.06             

No(F)             2.33** 1.08      0.03       

Sobriety Level                

HBD not impaired (I) 1.98** 0.95 0.04 2.25***       0.56       0.00      1.70**        0.71      0.02          1.56*** 0.52   0.00       

HBD impaired (I) 1.49*** 0.49 0.00       4.20**       1.63      0.01       0.92*** 0.24      0.00       

HBD impaired (F) 2.21** 1.06 0.04             

Licensed(I) -2.04** 0.80 0.01             

Std. Dev  8.69*** 2.08 0.00             

Licensed(F)    -2.60**       1.23     0.03              

Vehicle-specific variables 

Airbag not ejected(I)          4.57***       0.69      0.00      -2.47*** 0.68     0.00     

Std. Dev             5.20*** 1.10     0.00      

Airbag not ejected(F) -
5.10*** 

0.47 0.00    -4.36***      1.31     0.00        -6.40*** 1.00     0.00     

Std. Dev             5.20*** 1.10      0.00      

Vehicle Position                

In front(I) 2.06*** 0.40 0.00 1.20***       0.07      0.00      2.14***       0.17     0.00      2.09***       0.54      0.00      1.65*** 0.19     0.00      

In front(F)       2.76**       1.34     0.04             

Coef. Stands for coefficient.  

Std. Stands for standard error.   

Std. Dev stands for standard deviation. 

 p. stands for p-value.  

***, **, * are significance at 1%, 5%, 10% level. 

 

Table 3-3 Random Parameters for All Cases 

Crash type Random Distribution Significant Random 
Parameters 

PP  Triangular  Licensed(I) 
TT  Exponential  Age under 24(I) 
PT  Normal  Age under 24(I) 

Daylight(I) 
TP  Uniform  Constant 

Winter(I) 
Male(I) 
Surface wet(I) 

Overall Uniform Constant 
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Crash type Random Distribution Significant Random 
Parameters 
Surface wet(I)    
Straight but not level(I)   
Airbag not ejected (I) (F)   

3.3.2. Elasticity results 

Table 3-4 presents the results of the elasticity estimation averaged overall drivers for 2V crashes for the 
four crash configurations PP, TT, PT, TP and the comprehensive dataset. It is a posterior estimation 
based on the mixed MNL model estimated. The variables that significantly relate to severity level with a 
large elasticity are discussed. 

Effects of Weekday 

For the TT crashes, the weekday contributes negatively and increases the injury (I) probability, and in TP 
crashes, the fatality is decreased on a weekday. The increase of TT crashes might result from the 
business role of pickup trucks on weekdays. 

Effects of Season 

Winter is a crucial parameter in PP, TP, and overall crashes. However, it only increases the probability of 
injury for TP crashes, while it appears to be a positive factor for PP crashes and the comprehensive data, 
especially for fatality prevention. The negative effect may result from the bad weather in winter, while 
the positive impact can be because of the driver’s cautiousness in a freezing weather condition. Winter 
also shows heterogeneity in TP crashes, which might be influenced partially by the surface condition in 
winter discussed afterward.  

Effects of Surface condition 

Surface wetness also shows a distinct effect in TP crashes (negative) and overall data (positive), which, 
like the condition of winter, can result from the unfavorable driving condition and the extra carefulness 
of the drivers, respectively. Therefore, the driver should pay extra attention under bad surface 
conditions when a passenger car follows a pickup truck (or another type of vehicle with a larger mass).   

Effects of Light conditions 

Daylight provides visibility for safe driving and may cause the drivers to drive at high speed and cause 
crash injury. Daylight is shown as an impact factor in all the cases, but it does not always function the 
same. For PP crashes, it reduces the possibility of injury with an elasticity 0.11, while for the TT crashes 
and PT crashes, it significantly increases the possibility of damage. Although in TP crashes, the wound is 
reduced, the fatality is raised. It turns out that the pickup truck involved in crashes are inclined to get 
drivers injured while recalling that in the PT crash, the coefficient of Daylight is normally distributed with 
a mean of -0.52 and standard deviation of 1.26 as shown in Table 3-3, which also underlies the 
heterogeneity of the daylight in PT crashes. Generally, in the overall data model, daylight tends to 
decrease the possibility of both injury and fatality. In three of the four configurations, the dark without 
light significantly increases the likelihood of injury and is believed to influence the driver's judgment 
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directly. This result emphasizes that the lighting condition at night is crucial for safe driving. One high-
impact research area is to push for vision-enhancing and night-vision devices (Khattak, 2001). 

Effects of Roadway characteristics 

Roadway characteristics also contribute significantly to injury in a crash. Among all types of the roadway, 
the straight but not level increases the possibility of damage for PP, TT, PT, TP and overall crashes with 
elasticities 0.0292, 0.0682, 0.0533, 0.0532, 0.0556, respectively. On the other hand, curve and not level 
are shown significantly increasing the possibility of fatality for the PT crashes and the overall crashes, 
with the elasticity of 0.1099 and 0.0529, respectively. This indicates that the slope cause injury in most 
hits, and the fatality is increased if the road is not level and even curved, especially in the PT crashes. 
The result warns that a road sign indicating slope is essential on the road with hill, sag, and grade. The 
negative effect of slope and curve can also be found in other works (Li et al., 2019; Yu et al., 2020). 

Effects of driver specific variables  

Among all the driver-specific variables, the driver's gender, age, sobriety, and license significantly impact 
the driver injury severity (Ulfarsson & Mannering, 2004; Haleem & Gan, 2013; Wu et al., 2014). In 
general, the male driver has a positive action in avoiding injury and fatality coinciding with other works 
(Chen & Chen, 2001; Wu et al., 2014; Li et al., 2019). In the PP, TT and PT crashes, the male driver 
contributes positively, especially in the TT crashes male driver reduces the possibility of fatality with an 
elasticity -2.9484. In TP crashes, the elasticity result shows male drivers tend to increase the probability 
of fatality, which may result from the fact that the Male coefficient has firm heterogeneity, as shown in 
Table 2. Driver’s age is also a significantly related factor to the injury severity. In the PP crash, the Age 
above 65 raises the possibility of fatality with an elasticity of 0.0818. In TT crashes, the Age above 65 is 
not a significant factor. In both the PT and TP crash, the age above 65 is related to injury (I), but in the TP 
crash, the related fatal possibility reversely decreases with an elasticity of 0.021. This may be explained 
by the fact that the next car has minor damage in a crash. In TT and PT crashes, the probability of injury 
is increased in younger groups of age under 24. In these two situations, the coefficients of Age under 24 
have an exponential and normal distribution, respectively. This implies variation in the driving skill and 
expertise among individual young people, especially with the pickup truck. Another crucial factor is the 
Sobriety level. The result shows that if the driver drinks, whether the behavior is impaired or not, the 
possibility of injury increases, warning of the danger of driving under the influence of alcohol. In 
addition, whether a driver is licensed or not is a significant factor. In PT crash, the possibility of fatality is 
decreased with elasticity -2.5664. In PP crashes, the chance of injury increases, but Table 3-2 also shows 
that the parameter of licensed is random with a mean of -2.04 and a standard deviation of 8.69, which is 
consistent with the empirical recognition of the heterogeneity of driving behavior among authorized 
individuals, especially for passenger car drivers.  

Effects of Airbag not ejected 

The elasticity result shows that Airbag has not ejected decreases the probability of fatality in PP, PT, TP, 
and overall crashes. Only for the TT crashes, it is not a key factor. It is also essential to observe from 
table 3-2 that the coefficient of Airbag not ejected in overall data shows to be normally distributed. As 
shown, for injury (I), the mean is -2.47, and the standard derivation is 5.20, which indicates a 68.3% 
possibility for it to be negative. For the fatality (F), the mean is -6.40, and the standard variation is 5.20. 
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Thus, the coefficient is negative almost 90% of the time. These facts demonstrate the protection of 
airbags.    

Effects of Crash position 

When two vehicles crash, the dependence of the driver's injury severity on the vehicle's crash position 
relative to the other car is of interest for a 2V crash examination (Yasmin 2014). The result shows that, in 
general, the vehicle in front significantly relates to the injury in all configurations. An interesting 
phenomenon is that in the PT crash, the passenger car’s possibility of fatality (F) is raised with an 
elasticity of 1.1398. In contrast, in the TP crash, the pickup truck's possibility of fatality (F) is reduced 
with an elasticity -0.2635. This indicates that, in general, the passenger car has more disadvantages than 
the pickup truck in terms of driver safety, and extra caution should be paid when a passenger car is 
followed by a car.   

 

Table 3-4 Elasticity Estimation  

 

All of the values are real values multiplied by 100. (N), (I), and (F) stand for no injury, injury, and fatality, 
respectively. 

  PP   TT   PT   TP   All  
Variables  (N)  (I)  (F)  (N) (I)  (F)  (N) (I)  (F)  (N) (I)  (F)  (N)  (I)  (F) 

Weekday    -9.14   53.54    -9.14    0.05     0.06  -174.26    

                

Winter 0.60 -3.99     0.60       -1.03     8.34     1.52 0.41     -2.90     -34.9 

Clear    -2.78     15.95    -2.78          

Surface wet          -0.70     6.50     3.71 0.45    -3.24     0.45     

Daylight 1.74   -11.28 
   

  1.74 -4.48    26.77    -4.48 -0.96 20.01    -0.96 0.40 -2.89     2.65 2.04   -13.92     -90.74 

Dawn and Dust       0.19    -1.23     0.19    0.17   -1.38     0.17 

Dark without light -0.22 
     

1.02   -0.22 -0.47     2.46    -0.47    -0.23     1.17    -1.11 -0.14     0.73    -0.14 

Curve and Level    -0.19        1.00 -0.19          

Straight but not 
level 

-0.53 
     

2.92   -0.53 -1.29     6.82   -1.29 -0.65     3.33   -0.65 -0.90     5.32   -5.49 -0.82     5.56    -0.82 

Curve and not 
level 

      -0.07    -0.06     10.99    -0.08 0.45 5.29 

Male 3.03    -23.41     3.03 2.84 -21.95  -294.84 3.41    -26.46   3.41 0.06     2.21     11.54 3.81     -32.87     -60.74 

Belt not use -0.06 
     

0.19    -0.06          -0.01     0.00   0.8 

HBD impaired -0.18 
     

0.79    2.90       -0.14     0.43    -0.77 -0.08     0.49    -0.08 

HBD not impaired -0.06 
     

0.19    -0.06 -0.17     0.29   -0.17 -0.08     0.25    -0.08    -0.04 0.14 -0.04 

Licensed -8.56 
     

76.48    -8.56    0.18     0.14  -256.64       

Age under 24 1.00  -8.84     1.00 -0.46     6.32   -0.46 -0.38    6.71    -0.38 0.70   -7.48    4.54 0.64    -6.24    0.64 

Age above 65 -0.02   -0.01     8.18    -0.37  1.71   -0.37 -0.36     1.62    -2.10 -0.12     0.66   -0.12 

Airbag not 
ejected 

0.34     0.15   -508.22    0.30     0.23   -434.49 -16.79    118.25   -103.94 -4.51    49.49   -223.17 

In front -8.53     30.74    -853 -10.52     41.04    -10.52 -22.88 64.20    113.98 -4.37     21.76  -26.35 -8.17    32.20   -8.17 
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3.4. Summary 

We studied the rear-end 2V crashes of passenger cars and pickup trucks on divided two-way roads in the 
State of Washington for seven years, from 2010 to 2016. The risk factors for the severity in four 
configurations (PP, TT, PT and TP crashes) are examined. Four mixed MNL models for each crash 
configuration and one model for the overall data are constructed. The climate season-specific (Winter), 
environment-specific (Daylight, Surface wet, straight but not level), driver-specific (Male, Age under 24), 
and vehicle-specific (In front, Airbag not ejected) variables show heterogeneity on the injury but only in 
specific groups. Each model's elasticity analysis is conducted to determine the sensitivity of the 
possibility of severity to the change if the key factors are estimated in these five mixed MNL models. The 
similarities across all the models include drinking alcohol (whether impaired or not impaired) raises the 
risk of injury and even fatality in all cases; male drivers reduce the probability of injury in all 
circumstances; straight but not level contributes to unsafe driving; the vehicle in front significantly 
relates to injury; effects of airbag not ejecting and dark without light are related to the severity of injury. 
Besides similarity, each configuration has specific characteristics. For example, daylight driving is safer 
for all the cases except the TT crashes; In front and Curve and no level are impact factors of fatality only 
in PT crashes. Age above 65 is a risk factor of fatality only for PP crashes; surface condition influences TP 
crashes the most. The differences in the key elements and those with heterogeneity imply that specific 
strategies should be adopted in each configuration accordingly. It is worth digging deeper into each 
crash configuration to understand their risk factors better. More research efforts could be made, 
including studies of more potential risk factors such as the vehicle velocities, passengers in the vehicle, 
and so on. Time and space heterogeneity could also be a further consideration. 
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CHAPTER 4. A LATENT CLASS APPROACH FOR DRIVER INJURY SEVERITY ANALYSIS  

Temporal instability has been recognized as one of the major sources of unobserved heterogeneity in 
traffic safety research that has not been completely addressed. Overlooking temporal instability may 
result to biased estimates of effects of impact factors. In this chapter, we develop a latent class mixed 
logit model with temporal indicators to investigate highway single-vehicle crashes and the effects of 
significant contributing factors to driver injury severity. Crash data from 2010 to 2016 in the State 
Washington are collected with a total of 31115 single-vehicle crashes. The developed model is able to 
interpret both within- and across- class unobserved heterogeneity and temporal instability. After a 
careful comparison, a two-class model is selected as the final model. Estimation results show that: two 
temporal indicators show significant influence on latent class membership; urban indicator and principal 
type are found to be random parameters and have significant heterogeneity in the mean as a function of 
male indicator and driver’s age indicator. Variables with fixed effects, including animal collision, 
overturn collision, off-road collision, winter, minor arterial, interstate, wet, snow, ice, speed limit [5, 30), 
vehicle age [8, 12), [16, 70), turning movement, out control movement, lane-change movement, no 
airbag, deployed airbag, partial and totally ejection, seatbelt, and no liability, show significant influences 
on different levels of injury severity in each class. This study provided an insightful understanding of the 
time-varying effects of the significant factors on driver injury severity using pseudo elasticity analysis. 
The rest of the chapter is organized as follows: Section 4.1 provides the explicit description of the 
dataset. The details of model development are illustrated in Section 4.2. In Section 4.3, the model 
analysis results are comprehensively presented and discussed regarding the implication of the proposed 
model and the impacts of different risk factors. Finally, the entire research effort is concluded in Section 
4.4. 

4.1. Data 

This study was conducted based on a highway single vehicle crash dataset extracted from traffic crash 
records acquired from the Washington Department of Transportation (WSDOT). The dataset was drawn 
from a 7-year period from 2010 to 2016. The dataset can be classified into four categories: (a) general 
crash information, (b) environmental information, (c) vehicle information, and (d) driver and passenger 
information. More specifically, general crash information includes the crash severity in terms of five 
accident-severity categories (i.e., no injury, possible injury, evident injury, serious injury and fatality), 
collision type, temporal information, and county name. Environmental information involved information 
regarding weather, surface condition, lighting condition, speed limits, roadway characteristics, and 
indicators for work zone. Vehicle information contains the vehicle type, vehicle age, airbag condition, 
and ejection status. Driver and passenger information included drivers’ age, gender, seat belt usage, 
license status, insurance, and passengers restrain and sobriety conditions. 

The present study focused on single-vehicle crashes. Effort was made to pre-process the selected 
datasets. Variables that have similar definitions or similar impacts on driver injury outcomes were 
carefully examined and combined, which is consistent with the existing literature in roadway safety 
analysis (Gong and Fan, 2017; Li et al., 2018b; Chen et al., 2016b). For instance, three variables, including 
the roadway type, the state function class, and the federal function class, were all related to the road 
segment categories. The three variables were fused into one variable, and the new variable classified 
the roadway segments into four categories: interstate, principal arterial, minor arterial, and collector. 
Records that were fragmentary and erroneous, such as records with ‘unknown’ information, were 
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removed from the dataset.  Some continuous variables, such as driver’ age and vehicle’s age, were 
categorized based on previous traffic safety research experience (Chen et al., 2016a, 2016b; Li et al., 
2018a, 2019b; Wu et al., 2016b). Finally, a total of 31115 single vehicle crash records were extracted, 
involving 327 fatality crashes, 1,121 serious injury crashes, 4,891 evident injury crashes, 6,606 possible 
injury crashes and 18,170 no injury crashes. In order to maintain a meaningful sample size, fatality 
crashes and serious injury crashes were merged into one injury severity level, i.e., serious and fatality 
injury (S/F). Consequently, four levels of injury severity were considered, including no injury (N), possible 
injury (P), evident injury (E), and serious and fatality injury (S/F). Similar simplified classification methods 
have also been applied in Lee and Mannering (2002), Gong and Fan (2017), and Li et al. (2018b). The 
descriptive statistics of the dataset were illustrated in Table 4-1. 

Table 4-1. Variable Definitions and Descriptive Statistics. 

Variable Value Driver Injury Severity Total 

N % P % E % S/F % 

GENERAL 

Collision Fixed 13996 78.3% 2205 12.3% 1282 7.2% 400 2.2% 17883 

 Animal 5765 94.8% 185 3.0% 108 1.8% 21 0.3% 6079 

 Overturn 1937 57.0% 609 17.9% 697 20.5% 155 4.6% 3398 

 Off-road 2793 74.4% 486 12.9% 387 10.3% 89 2.4% 3755 

Season Spring 4743 76.5% 738 11.9% 557 9.0% 162 2.6% 6200 

 Summer 6060 76.7% 869 11.0% 741 9.4% 228 2.9% 7898 

 Fall 6611 79.3% 941 11.3% 611 7.3% 170 2.0% 8333 

 Winter 7077 81.5% 937 10.8% 565 6.5% 105 1.2% 8684 

ENVIRONMENT 

Route 
Type 

Urbana 10556 78.9% 1670 12.5% 907 6.8% 253 1.9% 13386 

Rural 13935 78.6% 1815 10.2% 1567 8.8% 412 2.3% 17729 

Function Collector 14054 78.6% 1827 10.2% 1577 8.8% 418 2.3% 17876 

 Minor 
arterial 

2420 77.9% 371 11.9% 225 7.2% 90 2.9% 3106 

 Principle 2692 79.3% 428 12.6% 226 6.7% 50 1.5% 3396 

 Interstate 5325 79.0% 859 12.8% 446 6.6% 107 1.6% 6737 

Surface Dry 13509 77.4% 1881 10.8% 1570 9.0% 484 2.8% 17444 

 Wet 6507 79.4% 993 12.1% 560 6.8% 137 1.7% 8197 

 Snow 2560 84.8% 288 9.5% 155 5.1% 17 0.6% 3020 

 Ice 1915 78.0% 323 13.2% 189 7.7% 27 1.1% 2454 

Lighting Daylight 11886 77.4% 1812 11.8% 1350 8.8% 312 2.0% 15360 

 Twilight 1392 77.9% 202 11.3% 159 8.9% 33 1.8% 1786 
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Variable Value Driver Injury Severity Total 

N % P % E % S/F % 

 Dark with 
light 

3889 77.8% 644 12.9% 350 7.0% 117 2.3% 5000 

 Dark 7324 81.7% 827 9.2% 615 6.9% 203 2.3% 8969 

Speed 
Limit 

[5,30) 2912 80.1% 425 11.7% 240 6.6% 60 1.6% 3637 

 [30,60) 7708 77.6% 1073 10.8% 867 8.7% 280 2.8% 9928 

 [60,80) 13871 79.0% 1987 11.3% 1367 7.8% 325 1.9% 17550 

Road 
Feature 

Level 14043 78.6% 2011 11.3% 1421 8.0% 387 2.2% 17862 

Grade 9757 78.7% 1392 11.2% 984 7.9% 259 2.1% 12392 

 Hill and 
sag 

691 80.3% 82 9.5% 69 8.0% 19 2.2% 861 

Work zone No 24153 78.7% 3438 11.2% 2449 8.0% 655 2.1% 30695 
 

Yes 338 80.5% 47 11.2% 25 6.0% 10 2.4% 420 

VEHICLE 

Type Passenger 
car 

12068 78.7% 1820 11.9% 1139 7.4% 305 2.0% 15332 

 Pickup 11648 79.9% 1515 10.4% 1120 7.7% 295 2.0% 14578 

 Truck 351 80.9% 46 10.6% 30 6.9% 7 1.6% 434 

 Other 424 55.0% 104 13.5% 185 24.0% 58 7.5% 771 

Age [0,4) 3234 84.7% 330 8.6% 206 5.4% 47 1.2% 3817 

 [4,8) 4799 82.4% 582 10.0% 352 6.0% 92 1.6% 5825 

 [8,12) 6398 79.6% 837 10.4% 653 8.1% 149 1.9% 8037 

 [12,16) 5193 76.9% 812 12.0% 605 9.0% 144 2.1% 6754 

 [16,70) 4867 72.8% 924 13.8% 658 9.8% 233 3.5% 6682 

Movement Moving 21907 79.0% 3024 10.9% 2203 7.9% 594 2.1% 27728 

 Turning 1082 80.7% 153 11.4% 82 6.1% 23 1.7% 1340 

 Parking 166 62.9% 43 16.3% 34 12.9% 21 8.0% 264 

 Backing 23 92.0% 0 0.0% 1 4.0% 1 4.0% 25 

 Merging 57 83.8% 6 8.8% 5 7.4% 0 0.0% 68 

 Out 
control 

506 80.1% 72 11.4% 48 7.6% 6 0.9% 632 

 Lane-
change 

750 70.9% 187 17.7% 101 9.5% 20 1.9% 1058 

Airbag No airbag 6039 77.9% 803 10.4% 661 8.5% 246 3.2% 7749 
 

Not 
deployed 

15243 84.5% 1569 8.7% 1046 5.8% 173 1.0% 18031 
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Variable Value Driver Injury Severity Total 

N % P % E % S/F % 
 

Deployed 3209 60.1% 1113 20.9% 767 14.4% 246 4.6% 5335 

Ejection No 24092 80.1% 3355 11.1% 2220 7.4% 424 1.4% 30091 

 Partial 385 53.7% 90 12.6% 161 22.5% 81 11.3% 717 

 Totally 14 4.6% 40 13.0% 93 30.3% 160 52.1% 307 

DRIVER 

Gender Female 11784 76.7% 1970 12.8% 1275 8.3% 327 2.1% 15356 
 

Male 12707 80.6% 1515 9.6% 1199 7.6% 338 2.1% 15759 

Age (0,24] 14794 80.6% 1893 10.3% 1356 7.4% 321 1.7% 18364 

 (25,45] 5430 76.3% 887 12.5% 617 8.7% 180 2.5% 7114 

 (45,65] 3059 75.4% 503 12.4% 371 9.1% 122 3.0% 4055 

 Above 65 1208 76.4% 202 12.8% 130 8.2% 42 2.7% 1582 

Belt Unused 1631 54.4% 458 15.3% 554 18.5% 357 11.9% 3000 
 

Used 19899 80.2% 2818 11.4% 1802 7.3% 285 1.1% 24804 
 

Child 
seatb 

2961 89.4% 209 6.3% 118 3.6% 23 0.7% 3311 

License No 270 68.2% 62 15.7% 59 14.9% 5 1.3% 396 
 

Yes 24221 78.8% 3423 11.1% 2415 7.9% 660 2.1 30719 

Liability No 3782 67.6% 855 15.3% 691 12.4% 265 4.7% 5593 
 

Yes 20709 81.1% 2630 10.3% 1783 7.0% 400 1.6% 25522 

Sobriety Other 946 67.9% 183 13.1% 170 12.2% 94 6.7% 1393 

 No drink 22017 80.9% 2886 10.6% 1949 7.2% 362 1.3% 27214 

 Not 
impairedc 

300 69.9% 69 16.1% 50 11.7% 10 2.3% 429 

 Impaired 1228 59.1% 347 16.7% 305 14.7% 199 9.6% 2079 

aindicates the highway section located in urban area 
bindicates both seat belt and child seat are used 
cdriving ability not impaired based on tox test 

4.2. Methodology 

4.2.1. Model development 

The single-vehicle crash injury severities were generally investigated using a latent class mixed logit 
model with temporal indicators. To begin, a finite number Q is pre-determined to group the highway 
single vehicle crash dataset into Q classes. Note that there is no strict rule on the selection of Q value 
(Xie et al., 2012). In this study, proposed models with different Q values were compared. Optimal class 
number is yielded in terms of the Akaike Information Criterion (AIC) and Bayesian Information Criterion 
(BIC), in addition to the log-likelihoods and McFadden’s pseudo R2 at convergence (McFadden et al., 
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1973; Yamaoka et al., 1978; Joo et al., 2010). It is not necessary to assign the crash records into any specific 
class. The classification will be done during model fitting which maximizes the heterogeneity among 
different classes. The function determining the probability, of which the ith crash record belongs to 
latent class q (q ∈ Q) and injury severity level j, is defined as follows 

 𝑈𝑈𝑗𝑗𝑗𝑗|𝑞𝑞 = 𝛽𝛽𝑗𝑗𝑗𝑗|𝑞𝑞𝒙𝒙𝑘𝑘𝑘𝑘 + 𝜀𝜀𝑗𝑗𝑗𝑗|𝑞𝑞  (4-1) 

where xi is the vector of explanatory variables. 

In our notation, the same explanatory vector xi is used for all the injury types; however, this is not a 
restriction, since it would be possible to replace appropriate row of j qβ  with the value of 0 if a specific 

variable does not have significant impact on jth injury severity in class q.  ji qε  is the unobserved 

heterogeneity for ith driver with jth injury severity in class q, which is designed as an independent and 
identically distributed random variable. j qβ  accounts for class-specified impacts of variable xi on jth 

injury severity. Accordingly, conditional on class q , the probability of the ith crash getting involved in j
the injury severity is then given by 
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The class membership, e.g., the probability for ith crash belonging to class q, is given as follows (Li et al., 
2018b; Gong and Fan, 2017; Shaheed and Gkritza, 2014; Xie et al., 2012) 
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where θq is a vector of class-specific parameters and zi is a vector of temporal indicators. Note that θQ is 
set to zero as reference. In Eq. (4-3), zi demonstrates the interaction among temporal instability and 

various characteristics involved in the model. It is possible that the probabilities ( )iP q q=  is 

determined by a set of fixed constants θqs if no characteristic zi is observed. Then the unconditional 

probability of ith crash getting involved in level j injury severity is given as follows 

 ( ) ( ) ( )1
, gQ

ji i q ji qq
F fβ θ θ β

=
=∑  (4-4) 

In addition to the across-class heterogeneity identified by the class-specific parameters, the unobserved 
heterogeneity within-class is accounted for by letting βj|q be a vector of identified parameters that varies 
across individual crashes, shown as follows. 

 q i qj q j q j qxβ β δ σ υ= + +  (4-5) 
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where βq is the population mean. δj|q is a vector of estimable parameters corresponding to the vector of 
variables xi, which influence the mean of βj|q. υj|q is a randomly distributed term that captures 
unobserved heterogeneity across crashes. In this study, we simply assume that υj|q follows a standard 
normal distribution with a mean of 0 and the standard deviation of 1 for two reasons. Firstly, previous 
studies have found that density functions, such as, lognormal, gamma, Weibull, and so on, were not 
statistically superior to the normal distribution (Moore et al., 2011; Shaheed and Gkritza, 2014; Li et al., 
2018b); and by differentiating the within and across-class heterogeneity, the required distribution 
assumption for the random parameters becomes less important since parameters can vary across 
crashes in a more flexible way. Hence, σq is the indicator for random parameters.  By substituting Eq. (4-

5) into Eq. (4-2), the conditional probability of the ith crash getting involved in level j  injury severity 

within class q is given by 
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Hence, we have 
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Model estimation is undertaken using maximum simulated likelihood (MSL) estimation (McFadden and 
Train, 2000; Train, 2009). In this study, the MSL evaluates the aforementioned parameters in the 
likelihood expression. The contribution of the ith crash to the total simulated likelihood, i.e., the 
simulated probability, is: 

 ( ) ( ) ( )
1 1

1, g
QR

r
ji i q ji q

r q
F f

R
β θ θ β

= =

= ∑∑  (4-8) 

where R is the number of simulated draws; βr denotes the value of all the random vectors draw from the 

pre-specified distribution in the rth draw; ( ),jiF β θ  is an unbiased estimator of ( ),jiF β θ  by 

construction. Its variance decreases as R increases. Collecting all terms, the simulated log likelihood (LL) 
is obtained as follows: 

 ( )
1 1

ln ,
J N

jiji
j i

LL d F β θ
= =

=∑∑  (4-9) 

where N is the total number of crash records; dji indicates the injury severity of ith crash record. 

The number of simulated draws, i.e., R, ranges in different studies (Blackburn and Gaston, 2001; Cappel- 
lari and Jenkins, 2003; Seraneeprakarn et al., 2017; Li et al., 2018a). Generally, with the increasing 
number of parameters to be identified within the model, the required number of random draws which 
can provide reasonable model convergence performance increases largely. Therefore, Halton draw was 
applied instead of random draw. Halton draw is able to produce the same level of performance with a 
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much smaller draw counts (Train, 2009; Bhat, 2003). A total of 1000 Halton draws are conducted with 
the MSL estimation in this study. 

4.2.2. Elasticity analysis 

The elasticity analysis is conducted to evaluate the impacts of variables on the likelihood of crash 
severity. The elasticity of a continuous independent variable xjik is given as follows (Washington et al., 
2010). 

 ji
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F ji jik
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jik ji

F x
E

x F
∂

=
∂

 (4-10) 

where ji

jik

F
xE  is the elasticity outcome for ith crash; xjik is the value of kth variable for the ith crash in the 

identified model of jth injury severity. Note that Eq. (4-10) is not applicable for indicator variables. The 

pseudo-elasticity, termed as 
ji

jik

F
xE , for measuring the influence of the indicator variables xjik on jth 

driver injury severity is expressed as follows (Kim et al., 2007). 
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The elasticity in Eq. (4-10) and the pseudo-elasticity in Eq (4-11) are both different for each individual 
crash i and each alternative j. In order to measure variable influence, the average pseudo-elasticity is 
calculated based on all the data. In addition, due to the random structures in the impact functions, the 
estimated distributions were adopted to generate the parameters of the corresponding variables instead 
of applying the fixed means. 

4.3. Model Estimation Results and Discussions 

4.3.1. Model estimation 

The model estimation is conducted using the NLOGIT 5 software. In order to reduce the model 
estimation bias caused by the multi collinearity between explanatory variables, the correlation 
coefficient between each pair of variables is estimated before model estimation. The estimated 
coefficients are shown in Figure 4.1. If two variables are found significantly correlated, they would be 
inputted into the model formulation one by one while monitoring the overall model fit, e.g., AIC and BIC, 
and the significance of the variables. The proposed model is fitted with the variables summarized in 
Table 4-1. As discussed above, no rigid rule is applicable in determining the optimal latent class number. 
The comparison results for models with different number of latent classes are presented in Table 4-2. 
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Figure 4.1. Correlation analysis results. 

Note that no temporal indicator is found to have significant impacts on latent class membership when 
the class number is greater than five and the class membership probabilities are determined by a set of 
fixed constants, which is, however, beyond the scope of the study. As shown in Table 4-2, the AIC and 
BIC values increase with the class number, indicating that increasing class number should not be 
recommended in this study. Moreover, when the class number is four, one of the four latent classes has 
no significant temporal indicators or significant constant term at 95% level of confidence, indicating that 
the significant difference of the specific class is rejected, while in the five-class model, two of the five 
latent classes are rejected at 95% level of confidence. Therefore, two-class model is selected as the final 
model in this study. 

Table 4-2. Comparison Results for Models with Different Numbers of Latent Classes 

Number of Class Class # Prob.a Temporal Indicatorb LLc AIC BIC 

2 
1 0.654*d Year2015, Year2016 

-19140 38558 39717 
2 0.346 n/a 

3 1 0.592* - -19126 38571 39898 
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Number of Class Class # Prob.a Temporal Indicatorb LLc AIC BIC 

2 0.139* Year2016 

3 0.268 n/a 

4 

1 0.695* Year2015, Year2016 

-19122 38588 40024 
2 0.119 Year2016 

3 0.095 - 

4 0.091 n/a 

5 

1 0.548* - 

-19114 38631 40317 

2 0.155* Year2015, Year2016 

3 0.066 - 

4 0.144 - 

5 0.117 n/a 

aestimated average class probability 
bsignificant indicators at 95% level of confidence influencing the class membership 
cLog Likelihood value 
dindicates that the constant term is significant at 95% level of confidence 
 

The detailed estimation results of the two-class model are listed in Table 4-3 and Table 4-4, respectively, 
including the coefficients, standard errors, and the p-values. The entire dataset is classified into two 
classes, and the average class probabilities are 65.4% and 34.6%, respectively. The McFadden’s pseudo 
R2 for the final model is 0.556, which means that model shows reasonably performance compared to the 
intercept-only model. In summary, explanatory variables can be classified into four types, including 
variables with standard fixed parameter estimates, variables influencing class membership, variables 
that produces statistically significant random parameters, and variables contributing to heterogeneity in 
the means. The number of variables falling in the four groups varies across different injury severity levels 
in the two classes, indicating that the proposed model is appropriate for analyzing the given dataset by 
capturing both within and across class heterogeneity (Li et al., 2018b). For instance, it is found that off-
road collision has a positive sign on possible injury (P) in Class 1, but a negative sign in Class 2. Ice 
surface condition shows significant effects on evident injury (E) in Class 1 but is rejected in Class 2. Year 
2015 and Year 2016 shows significant influence in latent class membership, indicating that the effects of 
the explanatory variables on injury severity varies significantly in 2015 and 2016. And also, in Table 4-3 
and Table 4-4, urban indicator and principal indicator are identified to be random parameters and have 
significant heterogeneity in the means. More specifically, urban indicator is found to have significant 
heterogeneity in the mean as a function of age indicator for (45, 65] and above 65, while principal 
indicator has significant heterogeneity in the mean as a function of male and age indicator for above 65. 
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Table 4-3. Results of Model Estimation for Class 1 

Variable Value 
P E S/F 

Coef. s.d.a pb Coef. s.d. p Coef. s.d. p 

Variable influence class membershipc       

Year 2015 0.219 0.093 0.018       

Year 2016 0.470 0.101 0.000       

Variable with random parameter       

Route 
Type Urban 1.196 0.400 0.003       

Function Principle 2.030 0.441 0.000       

Heterogeneity in mean       

Gender-Male: Function-
Principle -1.704 0.365 0.000       

Age-(45,65]: Route 
Type-Urban 1.090 0.184 0.000       

Age-above 65: Route 
Type-Urban 1.377 0.230 0.000       

Age-above 65: Function-
Principle 1.451 0.665 0.029       

Variable with standard fixed parameter       

Collision Animal -1.580 0.186 0.000 -1.080 0.517 0.037 -2.111 0.959 0.028 

Collision Overturn 0.508 0.150 0.001 2.394 0.291 0.000 0.235 0.134 0.078 

Collision Off-road 0.704 0.133 0.000 0.083 0.053 0.118    

Season Winter    -0.696 0.334 0.037 -0.484 0.246 0.049 

Route 
Type Urban    0.111 0.070 0.113 -1.735 0.645 0.007 

Function Minor 
arterial 1.478 0.421 0.000    -2.443 0.809 0.003 

Function Principle       -2.677 0.822 0.001 

Function Interstate 1.514 0.409 0.000    -2.188 0.722 0.002 

Surface Wet    -0.806 0.299 0.007 0.403 0.170 0.018 

Surface Snow 0.348 0.161 0.031 -1.361 0.778 0.080 -1.580 0.487 0.001 
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Variable Value 
P E S/F 

Coef. s.d.a pb Coef. s.d. p Coef. s.d. p 

Surface Ice    -0.658 0.452 0.146 -0.698 0.259 0.007 

Speed 
Limit [5,30)       -0.700 0.369 0.058 

Vehicle 
Age [8,12)    -0.067 0.022 0.003    

Vehicle 
Age [16,70) 0.170 0.063 0.007 0.179 0.078 0.022 0.329 0.105 0.002 

Movemen
t Turning    -0.588 0.248 0.017 -1.750 0.216 0.000 

Movemen
t 

Out 
control    -1.174 0.373 0.002    

Movemen
t 

Lane 
change 0.178 0.051 0.001       

Airbag No airbag -0.079 0.046 0.084 0.669 0.219 0.002 1.168 0.362 0.001 

Airbag Deployed 1.171 0.112 0.000 0.968 0.246 0.000 0.096 0.049 0.048 

Ejection Partial -1.993 0.585 0.001    0.173 0.085 0.041 

Ejection Totally 2.523 0.787 0.001 3.106 0.673 0.000 5.990 0.871 0.000 

Belt Unused 0.237 0.062 0.000 0.770 0.243 0.002 2.203 0.392 0.000 

Belt Child seat -0.223 0.096 0.020 -1.606 0.823 0.051 -1.018 0.534 0.057 

Liability No    0.315 0.185 0.089 0.071 0.045 0.113 

Sobriety Impaired 0.162 0.087 0.064 0.361 0.135 0.008 2.029 0.366 0.000 

astands for standard deviation 
bstands for p-value 
cvariables influencing class membership are fixed across different injury severity level 

 

Table 4-4. Results of Model Estimation for Class 2 

Variable Value 
P E S/F 

Coef. s.d.a pb Coef. s.d. p Coef. s.d. p 

Variable influence class membershipc       

Year 2015 0.000 (fixed parameter)c      
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Variable Value 
P E S/F 

Coef. s.d.a pb Coef. s.d. p Coef. s.d. p 

Year 2016 0.000 (fixed parameter)c      

Variable with random parameter       

Route 
Type Urban 0.896 0.233 0.000       

Function Principle 0.840 0.346 0.015       

Heterogeneity in mean       

Gender-Male: 
Function-Principle -0.706 0.343 0.040       

Age-(45,65]: Route 
Type-Urban -1.924 0.587 0.001       

Age-above 65: Route 
Type-Urban -1.536 0.684 0.247       

Age-above 65: 
Function-Principle 1.530 0.774 0.048       

Variable with standard fixed parameter       

Collision Animal -1.796 0.221 0.000 -2.273 0.259 0.000 -2.455 0.434 0.000 

Collision Overturn 1.302 0.222 0.000 1.117 0.235 0.000 1.508 0.262 0.000 

Collision Off-road -0.816 0.324 0.012 0.263 0.130 0.043    

Season Winter    0.045 0.030 0.133 1.508 0.262 0.000 

Route 
Type Urban    1.111 0.131 0.000 -0.168 0.101 0.094 

Function Minor 
arterial 0.141 0.096 0.143    -1.109 0.266 0.000 

Function Principle       -1.767 0.322 0.000 

Function Interstate 0.092 0.063 0.144    -1.956 0.346 0.000 

Surface Wet    -0.222 0.110 0.044 -2.034 0.307 0.000 

Surface Snow -2.799 0.990 0.005 -1.165 0.178 0.000 -0.901 0.249 0.000 

Surface Ice    -0.341 0.162 0.035 -1.793 0.423 0.000 

Speed 
Limit [5,30)       -0.887 0.382 0.020 
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Variable Value 
P E S/F 

Coef. s.d.a pb Coef. s.d. p Coef. s.d. p 

Vehicle 
Age [8,12)    0.243 0.099 0.014    

Vehicle 
Age [16,70) 0.616 0.155 0.000 0.551 0.130 0.000 0.408 0.202 0.044 

Movement Turning    -0.709 0.235 0.003 -0.999 0.383 0.009 

Movement Out 
control    -0.134 0.078 0.084    

Movement Lane 
change 0.702 0.259 0.007       

Airbag No airbag 0.706 0.162 0.000 0.436 0.126 0.001 0.907 0.251 0.000 

Airbag Deployed 1.578 0.209 0.000 1.578 0.157 0.000 2.527 0.281 0.000 

Ejection Partial 0.732 0.329 0.026    1.553 0.322 0.000 

Ejection Totally 2.903 1.278 0.023 3.329 1.217 0.006 4.440 1.339 0.001 

Belt Unused 1.100 0.248 0.000 1.260 0.208 0.000 1.809 0.284 0.000 

Belt Child seat -1.317 0.300 0.000 -0.884 0.176 0.000 -0.973 0.408 0.017 

Liability No    0.318 0.105 0.003 0.458 0.171 0.007 

Sobriety Impaired 0.742 0.274 0.007 0.842 0.217 0.000 1.345 0.285 0.000 

astands for standard deviation 
bstands for p-value 
cparameters for class memberships are fixed to zero in class 2 

4.3.2. Elasticity analyses 

It is easy to understand that the sign and the value of an estimated coefficient does not always 
represent the overall impact effects of variables (Washington et al., 2010). Therefore, the pseudo 
elasticity estimation, defined in Eq. (4-11), is applied to cope with this issue. Table 4-5 presents the 
average results of the elasticity analysis. The variables that have significant impacts in estimation results 
in Tables 4-3 and 4-4 are discussed in depth. 

Table 4-5. Results of Pseudo Elasticity Estimation 

Variable Value Base Value N P E S/F 

Collision Animal Fixed 259.51% -26.91%*a -32.58%* -59.97%* 

 Overturn Fixed -53.95% -4.43%* 147.28%* 8.80%* 

 Off-road Fixed -16.08% 4.59%* 28.56%* -9.02% 
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Variable Value Base Value N P E S/F 

Season Winter Spring -0.99% -0.22% -29.23%* 73.61%* 

Route Type Urban Rural -44.74% 129.12% -73.85%* -42.73%* 

Function Minor Arterial Collector -29.36% 54.24%* -12.94% -79.65%* 

 Principle Collector -19.54% 54.47% -12.59% -88.36%* 

 Interstate Collector -25.64% 66.03%* -4.39% -87.44%* 

Surface Wet Dry 12.83% 9.69% -15.00%* -27.23%* 

 Snow Dry 71.94% -0.80%* -24.69%* -27.46%* 

 Ice Dry 20.80% 14.90% -17.15%* -58.79%* 

Speed Limit [5,30) [30,60) 9.89% 6.88% 11.65% -47.93%* 

Vehicle Age [8,12) [0,4) -1.50% -0.75% 10.97%* -2.13% 

 [16,70) [0,4) -22.23% 5.14%* 8.34%* 8.20%* 

Movement Turning Moving 27.22% 17.98% -33.78%* -63.80%* 

 Out control Moving 6.19% 5.42% -31.35%* 4.56% 

 Lane Change Moving -15.97% 13.86%* -20.72% -16.95% 

Airbag No airbag Not Deployed -24.92% -9.37%* 15.63%* 102.91%* 

 Deployed Not Deployed -64.63% 22.04%* 10.34%* 46.89%* 

Ejection Partial No 70.24% -43.67%* 13.15% 147.17%* 

 Totally No -95.85% -37.30%* 12.98%* 708.80%* 

Belt Unused Used -51.99% -16.41%* 20.19%* 236.13%* 

 Child seat Used 69.41% -2.51%* -31.38%* -32.11%* 

Liability No Yes -7.27% -5.40% 23.27%* 17.79%* 

Sobriety Impaired No Drink -42.66% -14.82%* 3.29%* 211.01%* 

Gen Maleb Female 12.74% -4.47% 9.35% 10.24% 

Age [45,65)b [24,44) -6.14% 0.71% 26.94% 0.39% 

 Above 65 b [24,44) -18.94% 10.01% 10.28% 0.45% 

avariables have significant impacts on injury severity at 95% level of confidence 
bvariables have significant impacts on heterogeneity in means of random parameters 
 

Effects of general factors 

In the group of general factors, different collision objects play significant roles contributing to the crash 
injury severity. As shown in Table 4-5, the indicator “Animal” reduces the probabilities of injury severity, 
possible injury (P), evident injury (E), and serious and fatality injury (S/F), by 26.91%, 32.58%, and 
59.97%, respectively. This finding indicates that hits an animal producing a low severity injury, which is 
consistent with previous studies (Haghighi et al., 2018). The indicator “Overturn” and “Off-road” 
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represented that the single vehicle crash occurs due to overturning and running off-road. It shows that 
these two indicators reduce the probability of no injury crash (N), while increase the probability of 
evident injury (E) by 147.28% and 28.56%, respectively. Moreover, the “Overturn” increases the 
probability of serious and fatality injury (S/F) by 8.80%. Similar results have also been obtained in Shaheed 
and Gkritza (2014). 

As for the season characteristics, “Summer” and “Fall” are not significant at 95% level of confidence. It is 
found that, the “Winter” indicator significantly increases the probability of serious and fatality injury 
(S/F), while reduces the probability of the rests. This result may be caused by two reasons. On one hand, 
in winter, reduced free flow speed has been found in many previous studies (Hanbali, 1994; Qiu and 
Nixon, 2009), which produces positive effects on crash severity.  on the other hand, the “Winter” 
indicator may capture unobserved heterogeneity resulting from the cold weather and winter disasters, 
and it increases the probability of serious and fatality injury (S/F) by 73.61%. 

Effects of environmental factors 

Environmental indicators including urban, minor arterial, principle, interstate, various road surface 
conditions, and low speed limits, have significant impacts on injury severities of single vehicle crashes. 
The results of urban indicators are consistent with previous studies that, compared to rural area, evident 
injury (E) and serious injury and fatality (S/F) crashes are less likely to occur in an urban area (Xie et al., 
2012). Compared to “Collector” segments, the road function indicators, i.e., minor arterial, principle, and 
interstate, reduce the probability of evident injury (E) by 12.94%, 12.59% and 4.39% and serious and fatality 
injury (S/F) by 79.65%, 88.36% and 87.44%, respectively. The results reveal the fact that single vehicle 
crash occurring on collector segments have higher probabilities of evident injury, serious injury and 
fatality than those occurring on other segments (Gong and Fan, 2017). It is interesting to find that those 
adverse road surface conditions, such as wet, snow, and ice surface, reduce probabilities of evident 
injury (E), serious injury and fatality (S/F). These counter-intuitive results might be explained as risk 
compensation, i.e., driver’s behavior will be more conservative with adverse surface conditions 
(Mannering and Bhat, 2014). Cautious driving behaviors, such as slowing down and concentration, tend 
to reduce the probability of being severely or fatally injured in single vehicle crashes, which is supported 
by Lu et al. (2010) and Gong (2017). Analysis results for low-speed limits shown in Table 4-5 are 
consistent with the general understanding that increasing speed encourages higher injury severity level. 

Effects of vehicle factors 

Among the vehicle information collected in the single-vehicle crash dataset, factors, including vehicle 
age, vehicle movement, airbag condition, and ejection condition, have statistically significant effects on 
driver injury severity. The estimated elasticity results show that the probability of more serious injury, 
i.e., evident injury (E) and serious and fatality injury (S/F), grow with increasing vehicle age. For instance, 
compared to vehicles aged from 0 to 4, vehicles aged older than 16 years have a higher probability of 
evident injury (E) and serious and fatality injury (S/F) by 8.34% and 8.20%, respectively. As for the 
vehicle movement condition, it is possible to explain the different injury resulting via the drivers’ 
concentration in conducting those movements. More specifically, turning and lane-change movements 
are usually associated with much higher attention than normal moving. As a result, turning movement 
reduces the probabilities of evident injury (E) and serious and fatality injury (S/F) by 33.78% and 
63.80%, while the lane-change movement reduces the probabilities of the two levels of injury severity by 
20.72% and 16.95%, respectively. The different effects between the two movements may be caused by the 
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speed requirement in conducting the movement, i.e., turning movement is usually associated with 
slowing down, while lane-change, in most cases, requires speeding up. Note that in airbag information, 
both “No airbag” and “Deployed airbag” are associated with increasing the probability of higher injury 
severities, which have different explanations. As noted in previous literature, drivers owning the vehicle 
with the safety features, e.g., airbag, tend to be a safer driver (Mannering and Bhat, 2014). On one 
hand, the airbag itself is an important in-vehicle safety protection device. On the other hand, people, 
who choose vehicles with no airbag, tend to be unsafe drivers (Levitt and Porter, 2001). In this case, “No 
airbag” increases the injury severity level due to not only lacking airbag, but also low safety 
consciousness of the driver. However, “Deployed airbag” is another story. Usually, “Deployed airbag” is 
strongly related to heavy impact, which naturally indicates a serious crash. A similar explanation fits the 
ejection conditions. Although ejection might do some help in relieving the power of hitting, the ejection 
condition captures the uncontrolled impact severities. Accordingly, the heaviest impact throws the 
driver out of the vehicle, i.e., “Ejection totally”, and the driver is likely seriously injured, e.g., increasing 
the probability of serious and fatality injury (S/F) by 708.80%; and less heavy impact makes the driver 
partially out of the vehicle, i.e., “Ejection partially”, and increases the probability of evident injury (E) 
and serious and fatality injury (S/F) by 13.15% and 147.17%. 

Effects of driver factors 

As a most widely applied safety measure, seatbelt has been supported in many studies for saving life in 
crashes. There is no doubt that “Unused” seatbelt increases the evident injury (E) and serious injury and 
fatality (S/F) by 20.19% and 236.13%. And since the usage of seatbelt is restricted by law in Washington 
State, “Unused” seatbelt also captures the unobserved heterogeneity in drivers’ safety consciousness 
(Levitt and Porter, 2001, Kim et al., 2013, Gong and Fan, 2017). Driving without liability insurance, i.e., 
“No” liability indicator, is almost the same case. The use of “Child seat” indicates the fact that child is on 
board, which results in more conservative driving behaviors. Accordingly, as shown in Table 4-5, the “Child 
seat” indicator reduces the probabilities of possible injury (P), evident injury (E) and serious and fatality 
injury (S/F) by 2.51%, 31.38%, and 32.11%, respectively. When it comes to the sobriety condition, it is 
obviously that “Impaired” condition increases the probability of serious and fatality injury (S/F) 
dramatically, i.e., 211.01%. Gender and age of drivers are identified to capture heterogeneity across crash 
records in the means of random parameters. And the elasticity test results show that the impacts of the 
gender and age characteristics are in consistent with common knowledge. More specifically, male 
drivers feature aggressive driving behaviors when compared to female drivers. As a result, the 
probabilities of evident injury (E) and serious and fatality injury (S/F) are increased; aged drivers are easily 
injured due to declined physical function, which is reflected by the increasing probability of different injury 
severities, which is also observed in past research (Kim et al., 2013). 

Temporal instability analysis 

In addition to the average elasticity analysis discussed above, time-varying pseudo elasticity analysis is 
separately conducted for 2010-2014, 2015, and 2016 in accordance with the significant temporal 
indicators. Figure 4.2 illustrates the pseudo elasticity estimations for variables with significant impacts. 
The pseudo elasticity estimation mainly focused on injury severities, and the estimation results for non-
injury are omitted. 

It is found that the temporal indicators in class membership capture the instability of effects of the 
explanatory variables across the three time periods. As shown in Figure 4.2, a large proportion of 
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significant variables show unification trends from 2010 to 2016. And the rest variables show almost the 
same effects on the probabilities of some specific levels of injury severity, such as animal collision for 
serious and fatality injury (S/F), low speed limit for serious and fatality injury (S/F), and so on. By 
comparing the elasticity among the three time periods, Figure 4.2 shows that half of the variables have 
the reducing elasticity value, which may indicate the achievements of the safety countermeasures 
applied in Washington state and the safety improvement in vehicle techniques from 2010 to 2016. 
However, there still exist a set of factors, whose elasticity value increased from 2010 to 2016, which 
indicate the potential directions for future improvement. For instance, the pseudo elasticity value of 
vehicle age [16, 70) on serious and fatal injury (S/F) crashes increased from 7.91%, during 2010-2014, to 
9.31% in 2016. The possible explanation may be that new safety techniques are less likely to be applied 
in old vehicles (Hoye, 2019). As a result, as time goes by, the difference in safety performance between 
new vehicles and old vehicles, especially for those older than 16 years, is enlarged. New safety-related 
techniques to fit old vehicles and new police encouraging the elimination of old cars are of great 
interests. 

4.4. Summary 

A seven-year crash dataset from 2010 to 2016 is utilized to investigate highway single-vehicle crashes 
and the effects of contributing factors on driver injury severities in Washington States. A latent class 
mixed logit model with temporal indicators is developed for analyzing this dataset. The proposed model 
is able to interpret both within- and across- class unobserved heterogeneity and temporal instability. 
Model goodness-of-fit measurements, including AIC and BIC, were conducted to compare the models 
with different numbers of latent classes. The two-class model outperformed the other models with 
higher number of classes in terms of lower AIC and BIC. 

The temporal indicators, including Year 2015 and Year 2016, show significant influence on latent class 
membership, indicating that the effects of the explanatory variables on injury severity varies significantly 
in 2015 and 2016. Urban indicator and principal indicator are identified to be random parameters and 
have significant heterogeneity in the means as different functions of male, driver’s age indicator for [45, 
65) and driver’s age for above 65. The model also includes a wide variety of factors relating general 
crash characteristics (collision object type and seasonal indicator), environment characteristics (road 
function, surface type, and speed limit), vehicle characteristics (vehicle age, airbag condition, and 
ejection condition), and driver characteristics (driver age, belt usage, liability condition, and sobriety 
condition). The effects of the significant factors on driver injury severities are analyzed using pseudo 
elasticity estimations. Our results are generally in line with past studies that investigated the factors 
affecting single-vehicle crash severity. Based on the temporal elasticity analysis results, it is found that 
elasticity estimates of some significant variables (such as overturn collision, off-road collision, winter, 
snow, turning movement, deployed airbag, child seat, no liability and old driver indicator on serious 
injury and fatality) reduce during the studying periods, while the others (such as wet surface, ice surface, 
old vehicle, lane-change movement, no-airbag, partial and total ejection, impaired driver, and male 
driver on serious injury and fatality) increase or maintain the same values. Based on the time-varying 
effects and previous engineering experience, appropriate countermeasures and police 
recommendations could be implemented to reduce highway single-vehicle crashes. 

There exist some limitations that may affect result estimation and interpretations in this study. Although 
a large range of impact factors have been considered in this study, the spatial spillover effect, i.e., some 
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observed characteristics at one crash location not only influence injury severity at this location, but also 
effect on the probability of injury severity at neighboring sites, is overlooked (Mannering and Bhat, 
2014). As a result, spatial correlation is not considered in the proposed model. Moreover, the proposed 
model applied temporal indicators to illustrate the temporal instability of effects of various impact 
factors across different time periods. However, the proposed model can hardly be used in injury severity 
prediction. In order to address this issue, models, that allow the macroscopic variables to track temporal 
heterogeneity, can be developed (Xiong et al., 2014; Li et al., 2019b). 
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Figure 4.2. Time-varying elasticity estimation results. 
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CHAPTER 5. MIXED LOGIT AND LATENT CLASS MODEL APPROACHES IN DRIVER INJURY 
SEVERITY ANALYSIS 

In this chapter, we compare the mixed logit model and the latent class model in investigating the driver 
injury severity of the single vehicle crashes under rain conditions. In this study, mixed logit model (MLM) 
and latent class model (LCM) are both developed and compared based on a three-year crash dataset in 
four south central states, i.e., Texas, Arkansas, Oklahoma, and Louisiana. In addition, a pseudo-elasticity 
analysis approach is proposed to analyze the impact factors on driver injury severity. Also, several 
parsimony indices, e.g., AIC and BIC, and as well as McFadden pseudo r-squared, are calculated for both 
the models to evaluate their respective performances. Finally, this study provides insights on casualties 
and injury prevention. Results show that choosing the uniform distribution as the prior for random 
parameters could better improve the goodness-of-fit of the MLM than using normal and lognormal 
distributions. In addition, the two-class LCM also shows superiority when compared to three- and four-
class LCMs. Finally, a careful comparison between these two models is conducted, and the results 
indicate that the LCM has a slightly better performance in analyzing the study dataset in this study. 
Model estimation results show that curve, on grade, signal control, multiple lanes, pickup, straight, 
drug/alcohol impaired, and seat belt not used can significantly increase the probability of incapacitating 
injuries and fatalities for drivers in the two models. On the other hand, wet, male, semi-trailer, and 
young can significantly decrease the probability of incapacitating injuries and fatalities for drivers. This 
study provides an insightful understanding of the effects of these attributes on rural single-vehicle 
crashes under rain conditions and beneficial references for developing effective countermeasures for 
severe injury prevention. The rest of the chapter is organized as follows: Section 5.1 provides an explicit 
description of the dataset. The detailed methodology design is described in Section 5.2. The model 
analysis results and discussions are illustrated in Section 5.3. Finally, the entire research effort is 
concluded in Section 5.4. 

5.1. Data 

A three-year crash dataset including all rural single-vehicle crashes under rain conditions in four South 
Central states from 2012 to 2014 is utilized in this research. This dataset is obtained from the Texas 
Department of Transportation (TxDOT), Arkansas State Highway and Transportation Department 
(AHTD), Oklahoma Department of Transportation (OKDOT), and Louisiana Department of Transportation 
and Development (LADOTD). This new data set includes more explicit crash attributes which can be 
captured more appropriately by LCMs so that we can fully demonstrate the modeling process and 
develop the model specifications. The geographical locations of these four states are illustrated in Figure 
5.1. These states are concentrated in the south-central United States and have similar climatic 
characteristics, such as precipitation characteristics (Carter et al., 1974), and annual temperature 
variations (Aguilar et al., 2005). In addition, the similar demographic features of these states indicate 
that they can be studied as a whole, as evidenced by numerous peer studies in different fields (Adams et 
al., 2016; Miller et al., 2013; Munn et al., 2002). 
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Figure 5.1 Location map of study areas 

 
In view of the differences in the process of recording crash reports in the four states, only the identical 
variables from the sub-dataset of each of the four states were selected in the study. After careful 
examination, the incomplete and erroneous records in the original data set were deleted. Finally, 17,929 
accurate records were retained in the study for modeling analysis. The final dataset contains detailed 
information on driver injury severity and potential contributing factors regarding the characteristics of 
the crash, vehicle, and driver, such as road geometry, vehicle type, and driver demographics. The driver 
injury severity was classified into five subtypes in the original files, including fatal injury, incapacitating 
injury, visible injury, complaint of injury, and no apparent injury, respectively. In this study, fatal injury 
and incapacitating injury are combined together as the most severe injury severity level to maintain a 
statistically meaningful sample size. The classifications of other injury severities are consistent with the 
original files. Therefore, driver injury severity is categorized into four subtypes in this study, including O 
(original category: no apparent injury), C (original category: complaint of injury), B (original category: 
visible injury), and AK (original category: fatal injury and incapacitating injury), respectively. Some 
continuous integer variables (including driver age and number of vehicles in the crash) are categorized 
as discrete variables with a finite number of exclusive values, as a constant coefficient may not fully 
reveal the various impacts of a continuous variable on driver injury severity when its numerical value 
falls into different ranges (Chen et al., 2016b). Moreover, based on our previous studies and engineering 
experience (Chen et al., 2015a, 2016c, 2015b), some multi-categorical variables with an excessive 
number of original values are simplified to improve modeling efficiency. For example, right turn and 
making a right turn on red are combined as a variable, right turn, to reduce the number of categorical 
values in a variable. Furthermore, variables with relatively similar impacts on driver injury severity but 
not having enough records of presence, such as alcohol-impaired and drug-impaired, are combined as 
an integrated factor for modeling simplification purpose. The descriptive statistics of the studied dataset 
are shown in Table 5-1.  

 

Table 5-1 Variable Definition and Description 

Variable Driver injury severity Total 
O (Mean) C (Mean) B (Mean) AK (Mean) 

Severity 10850 0.61 3855 0.22 2387 0.13 837 0.05 17929 
Light Condition 
Dark 3909 0.61 1308 0.2 896 0.14 337 0.05 6450 
Dawn 151 0.64 24 0.1 41 0.17 20 0.08 236 
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Variable Driver injury severity Total 
O (Mean) C (Mean) B (Mean) AK (Mean) 

Daylight 6790 0.6 2523 0.23 1450 0.13 462 0.04 10982 
Road Character 
No curve 8734 0.61 3302 0.23 1747 0.12 564 0.04 14347 
Curve 2116 0.59 553 0.15 640 0.18 273 0.08 3582 
Road Grade 
Level 9339 0.61 3345 0.22 2059 0.13 662 0.04 15405 
Hillcrest 255 0.63 74 0.18 54 0.13 20 0.05 403 
On grade 1256 0.59 436 0.21 274 0.13 155 0.07 2121 
Road Surface Condition  
Dry 143 0.52 62 0.23 40 0.15 28 0.1 273 
Wet 10629 0.61 3776 0.21 2288 0.13 786 0.05 17258 
Snow 78 0.68 17 0.15 14 0.12 5 0.04 114 
Traffic Control 
No Control 1489 0.62 540 0.22 334 0.14 44 0.02 2407 
Stop-Yield Sign 53 0.65 12 0.15 13 0.16 3 0.04 81 
Signal Control 9308 0.6 3303 0.16 2040 0.17 790 0.07 8666 
Number of Lanes  
One Lane 589 0.64 165 0.18 135 0.15 29 0.03 918 
Two Lanes 8738 0.59 3383 0.23 1923 0.13 670 0.05 14714 
Multiple Lanes 1523 0.66 307 0.13 329 0.14 138 0.06 2297 
Vehicle Type 
Passenger Car 9481 0.61 3501 0.23 1998 0.12 692 0.04 13715 
Pick-up 1214 0.59 342 0.17 374 0.18 141 0.07 2071 
Semi 117 0.79 12 0.08 15 0.1 4 0.03 148 
Bus 38 1 0 0 0 0 0 0 38 
Action 
Straight 7990 0.61 3052 0.23 1443 0.11 560 0.04 13044 
Right Turn 1319 0.57 364 0.16 455 0.2 164 0.07 2302 
Left Turn 1450 0.59 434 0.18 479 0.19 113 0.05 2476 
U-Turn 7 1 0 0 0 0 0 0 7 
Slowing 70 0.82 5 0.06 10 0.12 0 0 85 
Backing 14 1 0 0 0 0 0 0 14 
Seat Belt used 
Used 10288 0.61 3659 0.22 2162 0.13 694 0.04 16803 
Not used 562 0.5 196 0.17 225 0.2 143 0.13 1126 
Drug/Alcohol Impaired 257 0.39 142 0.21 178 0.27 86 0.13 663 
Gender 
Male 6323 0.63 1937 0.19 1289 0.13 487 0.05 10036 
Female 4527 0.57 7893 1 1098 0.14 350 0.04 7893 
Age                   
Young (<25 years) 4468 0.61 1544 0.21 1033 0.14 259 0.04 7304 
Middle (25~64 years) 5938 0.6 2141 0.22 1246 0.13 530 0.05 9855 
Old (>64 years) 444 0.58 170 0.22 108 0.14 48 0.06 770 
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5.2. Methodology 

5.2.1. Mixed logit model 

Assuming that driver injury severities are classified into 𝐾𝐾 levels (in this study 𝐾𝐾 = 4), and given the fact 
that the studied dataset is regarding single-vehicle crashes, the function determining the driver injury 
severity level 𝑘𝑘 (𝑘𝑘 ∈ 𝐾𝐾) for the 𝑛𝑛th driver, 𝑌𝑌𝑘𝑘𝑘𝑘, is given by  

 𝑌𝑌𝑘𝑘𝑘𝑘 = 𝜷𝜷𝑘𝑘𝑿𝑿𝑘𝑘𝑘𝑘 + 𝜀𝜀𝑘𝑘𝑘𝑘 (5-1) 

where 𝜷𝜷𝑘𝑘 is a vector of parameters to be estimated for driver injury severity level 𝑘𝑘 which may vary 
across observations, 𝑿𝑿𝑘𝑘𝑘𝑘 is a vector of explanatory variables (light conditions, traffic controls, driver 
ages, etc.), and the disturbance term is notated as 𝜀𝜀𝑘𝑘𝑘𝑘, which is assumed to be generalized extreme 
value distributed (McFadden, 1981). Consequently, the standard multinomial logit model (neglecting for 
the error components) can be expressed as  

 𝑃𝑃𝑛𝑛(𝑘𝑘) = 𝑒𝑒𝛃𝛃𝑘𝑘𝐗𝐗𝑘𝑘𝑘𝑘
∑ 𝑒𝑒𝛃𝛃𝑘𝑘𝐗𝐗𝑘𝑘𝑘𝑘∀𝑘𝑘∈𝐾𝐾

  (5-2) 

where 𝑃𝑃𝑛𝑛 (𝑘𝑘) is the probability of the 𝑛𝑛th driver having 𝑘𝑘th severity level. Supposing the random 
parameters that capture unobserved heterogeneity on driver injury severity outcomes are given by 
𝑓𝑓(𝜷𝜷𝑘𝑘|𝝋𝝋), where 𝝋𝝋 is a vector that representing the probability density function (PDF). According to 
previous studies (McFadden and Train, 2000; Train, 2003), in the MLM, the resulting outcome 
probabilities 𝑃𝑃𝑛𝑛(𝑘𝑘|𝝋𝝋) are given by  

 𝑃𝑃𝑛𝑛(𝑘𝑘|𝝋𝝋) = ∫ 𝑒𝑒𝜷𝜷𝒌𝒌𝑿𝑿𝑘𝑘𝑘𝑘
∑ 𝑒𝑒𝜷𝜷𝒌𝒌𝑿𝑿𝑘𝑘𝑘𝑘∀𝑘𝑘∈𝐾𝐾

𝑓𝑓(𝜷𝜷𝑘𝑘|𝝋𝝋)𝑑𝑑𝜷𝜷𝑘𝑘  (5-3) 

Consequently, the individual specific variations of the impacts of the corresponding variable 
vector, 𝑿𝑿𝑘𝑘𝑘𝑘, is accounted by the parameter vector, 𝜷𝜷𝑘𝑘. Different with the standard multinomial 
logit model, 𝜷𝜷𝑘𝑘 is not a fixed parameter and may be randomly distributed with various mode and 
skewness. Normal distribution is the most familiar, simplest assumption of the distribution of  𝜷𝜷𝑘𝑘, 
and is specified as,  
 𝜷𝜷𝑘𝑘 = 𝜷𝜷𝑖𝑖 + 𝜎𝜎𝑖𝑖𝜈𝜈𝑖𝑖, 𝜈𝜈𝑖𝑖~𝑁𝑁(0,1)  (5-4) 
where 𝜷𝜷𝒊𝒊 is the mean, 𝜎𝜎𝑖𝑖 is the standard deviation of the distribution, and 𝜈𝜈𝑖𝑖 is the individual-specific 
heterogeneity, with mean equal to zero and standard deviation equal to one (Greene, 2012; Li et al., 
2018b). 
In this study, not only the normal distribution but also other types of distribution are chosen to limit the 
parameter values to a specific range based on engineering experience. For example, as shown in Eq. (5-
5), the lognormal distribution is used to maintain the values of certain parameters (e.g., drug-impaired, 
seatbelt used, etc.) to be either positive or negative 
 𝜷𝜷𝑘𝑘 = 𝑒𝑒𝜷𝜷𝑖𝑖+𝜎𝜎𝑖𝑖𝜈𝜈𝑖𝑖,  𝜈𝜈𝑖𝑖~𝑁𝑁(0,1) (5-5) 
In addition, to ensure a reasonable range of the variation of a parameter, uniform distribution is 
selected on certain parameters to replace the normal distribution that assumes the variation range is 
infinite, and is given by  
 𝜷𝜷𝑘𝑘 = 𝜷𝜷𝒊𝒊 + 𝜎𝜎𝑖𝑖𝜈𝜈𝑖𝑖, 𝜈𝜈𝑖𝑖~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(−1,1) (5-6) 
Normal distribution, lognormal distribution, and uniform distribution are separately assumed for each 
potential random parameter. The model is finalized based on the characters of these parameters as well 
as some parsimony indices, including Akaike Information Criterion (AIC) and Bayesian Information 
Criterion (BIC). AIC and BIC are defined as follows, respectively, 
 AIC = −2 ln(𝐿𝐿) + 2𝑝𝑝  (5-7) 
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 BIC = −2 ln(𝐿𝐿) + 𝑝𝑝 × ln (𝑁𝑁)  (5-8) 
where ln(𝐿𝐿) is the model likelihood, 𝑝𝑝 is the number of estimated model parameters in the model, 
and 𝑁𝑁 is the total number of observations. Lower AIC or BIC value of a candidate model generally 
indicates the model has better fit and is closer to the “true” model.  
McFadden Pseudo R-squared (McFadden and Zarembka, 1974) statistic is also applied to demonstrate 
the model fitness. The formula is given as 

 𝑅𝑅2 = 1 − ln 𝐿𝐿�(𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)
ln 𝐿𝐿�(𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

  (5-9) 

where 𝐿𝐿� is the estimated likelihood, 𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the full model with the constant term and all predicting 
variables, 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the intercept model only including the constant term. The log likelihood of the 
intercept model is treated as a total sum of squares (TSS), and the log likelihood of the full model is 
treated as the sum of squared errors of prediction (SSE). The ratio of the likelihoods suggests the level of 
improvement over the intercept model offered by the full model. According to previous research 
(Domencich and McFadden, 1975), the McFadden Pseudo R-squared value in this study indicates that 
the full model is a significantly better fit compared with the intercept model.  

5.2.2. Latent class model 

The LCM has some similarities with the MLM but embodies several critical differences as well. This 
model is generally used to discover potential subtypes or confirm hypothesized subtypes based on 
multivariate categorical data (Lazarsfeld et al., 1968). The underlying theory of the LCM posits that 
individual behavior depends on observable attributes and on latent heterogeneity that varies with 
factors that are unobserved by the analyst. In an LCM framework, a discrete distribution (e.g., 
multinomial distribution) is selected to model unobserved heterogeneity across observations. The latent 
classes that are not revealed to analyst could be treated as different bins where an individual resides in 
based on its own characteristics.  
Assuming there are 𝐶𝐶 distinct latent classes in the model, the probability of the 𝑛𝑛th crash record 
belonging to class 𝑐𝑐 (𝑐𝑐 ∈ 𝐶𝐶) specified by an MNL model is defined as: 

 𝑃𝑃𝑛𝑛(𝑐𝑐) = 𝑒𝑒𝜽𝜽𝑐𝑐𝜸𝜸𝑛𝑛

∑ 𝑒𝑒𝜽𝜽𝑐𝑐𝜸𝜸𝑛𝑛∀𝐶𝐶
  (5-10) 

where 𝜸𝜸𝑛𝑛 is a vector of characteristics that determine class 𝑐𝑐 probabilities for 𝑛𝑛th crash, 𝜽𝜽𝑐𝑐 is the 
corresponding vector of estimable parameters. In addition, the conditional probability of in the 𝑛𝑛th 
driver in class 𝑐𝑐 having level 𝑘𝑘 injury severity is given by  

 𝑃𝑃𝑛𝑛(𝑘𝑘|𝑐𝑐) = 𝑒𝑒𝛃𝛃𝑘𝑘𝑘𝑘𝐗𝐗𝑘𝑘𝑘𝑘𝑘𝑘
∑ 𝑒𝑒𝛃𝛃𝑘𝑘𝑘𝑘𝐗𝐗𝑘𝑘𝑘𝑘𝑘𝑘∀𝑘𝑘∈𝐾𝐾

  (5-11) 

Finally, the unconditional probability of driver in the 𝑛𝑛th crash having level 𝑘𝑘 injury severity is defined 
as: 
 𝑃𝑃𝑛𝑛(𝑘𝑘) = ∑ 𝑃𝑃𝑛𝑛(𝑐𝑐)∀𝐶𝐶 × 𝑃𝑃𝑛𝑛(𝑘𝑘|𝑐𝑐)  (5-12) 
As mentioned above, significant research effort has been made in search of an optimal number of 
classes when an LCM is developed. In this study, a statistical accrual searching process is utilized to find 
the optimal number of latent classes, starting with 2 latent classes and increasing by 1 in each step up to 
the maximum plausible number of latent classes, and AIC and BIC are selected to assess model fitness.  
Estimation of the variables in this study is conducted with an iterative numerical method, the maximum 
likelihood estimation (MLE) algorithm. The estimated asymptotic covariance matrix is based on the 
second derivatives of the specific utility functions. The Berndt–Hall–Hall–Hausman (BHHH) estimator is 
used in case that the matrix fails to be positive because of rounding error (Berndt et al., 1974). 
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5.2.3. Pseudo-elasticity analysis 

Extensive studies have proved that the signs of parameter estimation results are not always consistent 
with the real impacts of these parameters when a multinomial response variable is applied in model 
design (Kim et al., 2013; Osman et al., 2016; Wu et al., 2014). Therefore, an elasticity analysis is 
necessary to assess the influences of statistically significant variables in each of the proposed models, 
given the multi-level driver injury severity outcome. The elasticity is calculated in the form of the partial 
derivative for each observation (Washington et al., 2011), 

 𝐸𝐸𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘
𝑃𝑃𝑘𝑘𝑘𝑘 = 𝜕𝜕𝑃𝑃𝑘𝑘𝑘𝑘

𝜕𝜕𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘

𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘
𝑃𝑃𝑘𝑘𝑘𝑘

 (5-13) 

where 𝐸𝐸𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘
𝑃𝑃𝑘𝑘𝑘𝑘  is the elasticity outcome for the driver of the 𝑛𝑛th crash with severity level 𝑘𝑘, 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘 is the 

value of the 𝑖𝑖th variable for the 𝑛𝑛th crash in the propensity function with respect to the 𝑘𝑘th injury 
severity level. However, Eq. (5-12) is not applicable for this study since the variables have already been 
transformed into binary forms (with 0/1 outcome), and the probabilities are not differentiable with 
respect to indicator variables. To address this issue, direct pseudo-elasticity is defined in Eq. (5-13) by 
modifying Eq. (5-12) to calculate the influence of each significant indicator variable (Kim et al., 2007), 

 𝐸𝐸(𝑝𝑝)𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘
𝑃𝑃𝑘𝑘𝑘𝑘 = 𝑃𝑃𝑘𝑘𝑘𝑘[𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘=1]−𝑃𝑃𝑘𝑘𝑘𝑘[𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘=0]

𝑃𝑃𝑘𝑘𝑘𝑘[𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘=0]   (5-14) 

where 𝐸𝐸(𝑝𝑝)𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘
𝑃𝑃𝑘𝑘𝑘𝑘  is the pseudo-elasticity of the probability and is defined as the percentage change in 

probability when an indicator variable is switched (i.e., from 0 to 1 or from 1 to 0); 𝑃𝑃𝑘𝑘𝑘𝑘 is the probability 
the driver of nth crash having an injury severity level k for the given value of the variable 𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘 while 
holding other variables constant. The direct pseudo-elasticity in Eq. (5-14), 𝐸𝐸(𝑝𝑝)𝑋𝑋𝑘𝑘𝑘𝑘𝑘𝑘

𝑃𝑃𝑘𝑘𝑘𝑘 , is calculated for 

each record in the dataset, and the average pseudo-elasticity is calculated based on all data records to 
measure variable influence. 

5.2.4. Temporal stability test 

In order to test and compare the temporal stability of MLM and LCM, a series of likelihood ratio tests 
are conducted. These tests are used to compare models developed for two different years and examine 
if the parameter estimates are stable between the two years. The test statistic follows a  𝜒𝜒2 distribution 
with degrees of freedom equal to the number of estimated parameters and can be written as 
(Washington et al., 2011) 

 𝜒𝜒2 = −2[𝐿𝐿𝐿𝐿�𝜷𝜷𝑡𝑡2𝑡𝑡1� − 𝐿𝐿𝐿𝐿�𝜷𝜷𝑡𝑡1�]   (5-15) 
where 𝐿𝐿𝐿𝐿�𝜷𝜷𝑡𝑡2𝑡𝑡1� is the log-likelihood at convergence of a model containing converged parameters 
based on using year 𝑡𝑡2′𝑠𝑠 data, while using data from year 𝑡𝑡1, and 𝐿𝐿𝐿𝐿�𝜷𝜷𝑡𝑡1� is the log-likelihood at the 
convergence of the model using year 𝑡𝑡1′𝑠𝑠 data. It should be noted that the parameters are no longer 
restricted to using year 𝑡𝑡2′𝑠𝑠 converged parameters as are the case for 𝐿𝐿𝐿𝐿�𝜷𝜷𝑡𝑡2𝑡𝑡1�. This test is also 
reversed such that year 𝑡𝑡1 above becomes year 𝑡𝑡2 and year 𝑡𝑡2 above becomes subset year 𝑡𝑡1. The 
resulting 𝜒𝜒2 statistic can be used to determine if the null hypothesis that the parameters are equal in 
the two years can be rejected. 

5.3. Estimation results and discussion 

The NLOGIT 5 software is utilized for model estimation. It should be noted that although we introduced 
temporal instability, the detailed estimation results of each year are omitted due to the high complexity. 
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Instead, the three-year overall parameter estimation results and corresponding pseudo-elasticity results 
are presented for discussing their impacts on driver injury severity. 

5.3.1. Mixed logit model estimation results 

A simulation-based maximum likelihood estimation (MLE) method is used to estimate model parameters 
in the MLMs. Three models with different assumptions on parameter distributions, including normal, 
lognormal, and uniform distributions, are examined respectively. By balancing the computational cost-
efficiency and model goodness-of-fit, simulations with 1,000 Halton draws are applied in each model to 
provide an efficient estimation (Train, 2000). In addition, the O level is selected as the reference level. 
The comparison results of the three models are provided in Table 5-2.  

 

Table 5-2 Comparison Results of MLMs with Different Distributions  

Model No. 1 2 3 
Distribution Normal  Lognormal  Uniform  

Significant random parameters (Injury 
Severity) 

Curve (C), Male (C), 
Young driver (AK), Male 
(AK) 

None 
Curve (C), Male (C), 
Young driver (AK), 
Male (AK) 

Log likelihood -18138.98 -18226.73 -18130.34 
Number of estimated model 
parameters  

26 18 26 

AIC 36329.96 36489.46 36312.68 
BIC 36532.61 36629.76 36515.33 

 
As illustrated in Table 5-2, the results indicate that using lognormal distribution as the prior distribution 
assumption (Model 2) is not appropriate for this crash dataset since there is no significant random 
parameter found with this assumption. In contrast, several parameters (e.g., curve, male, etc.) are found 
to be randomly distributed in the other two models with the uniform and normal distributions 
assumptions (Model 1 and Model 3), indicating that the two distributions are both applicable for 
analyzing the dataset. In addition, Model 2 has the highest AIC and BIC values, also demonstrating that 
the lognormal distribution works inferior to the other two. Based on the rule-of-thumb of AIC and BIC 
(Schermelleh-Engel et al., 2003), using the uniform distribution as prior shows much better performance 
than using the normal distribution. Thus, Model 3 is selected as the final model in this study. The 
estimation results using MLM with uniform distribution simulated random parameters (Model 3) are 
illustrated in Table 5-3.  
 

Table 5-3 Estimation Results of MLM 

Variable Coefficient Standard error t-stat  
95% Confidence interval 
Lower Upper 

Constants 
C 2.43* 0.20 12.15 2.04 2.82 
B 1.38* 0.18 7.67 1.03 1.73 
AK 1.72* 0.19 9.05 1.35 2.09 
Mean of random parameters 
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Variable Coefficient Standard error t-stat  
95% Confidence interval 
Lower Upper 

Male (C) -1.04* 0.27 -3.85 -1.57 -0.51 
Curve (C) -0.52 0.49 -1.06 -1.48 0.44 
Male (AK) -1.61* 0.53 -3.04 -2.65 -0.57 
Young (AK) -1.63* 0.51 -3.20 -2.63 -0.63 
Spread scale of random parameters 
Male (C) 2.96* 0.32 9.26 2.33 3.59 
Curve (C) 3.91* 0.71 5.51 2.52 5.31 
Male (AK) 3.69* 0.44 8.38 2.83 4.55 
Young (AK) 3.00* 0.45 6.66 2.11 3.88 
Fixed parameters 
Semi (C) -0.91* 0.39 -2.33 -1.67 -0.15 
Straight (C) -0.85* 0.07 -12.14 -0.99 -0.71 
Drug/Alcohol Impaired (C) 1.86* 0.16 11.63 1.55 2.17 
Signal Control (B) -0.47* 0.04 -11.75 -0.55 -0.39 
Multiple Lanes (B) -0.36* 0.07 -5.14 -0.50 -0.22 
Semi (B) -0.84* 0.31 -2.71 -1.45 -0.23 
Drug/Alcohol Impaired (B) 0.41* 0.11 3.73 0.19 0.63 
Male (B) -0.31* 0.04 -7.75 -0.39 -0.23 
Curve (AK) 0.88* 0.11 8.00 0.66 1.10 
On grade (AK) 0.57* 0.13 4.38 0.32 0.82 
Wet (AK) -0.61* 0.20 -3.05 -1.00 -0.22 
Pick-up (AK) 0.31* 0.13 2.38 0.06 0.56 
Semi (AK) -1.48* 0.68 -2.18 -2.81 -0.15 
Seatbelt not used (AK) 1.88* 0.17 11.06 1.55 2.21 
Drug/Alcohol Impaired (AK) 2.08* 0.21 9.90 1.67 2.49 
Model statistics 
Number of observations (N) 17929.00 
Log-likelihood at constant -34854.87 
Log-likelihood at convergence -18130.34 
McFadden Pseudo R-squared  0.47 

* Level of significance ≤ 5%. 
 
A variety of variables is found significantly associated with driver injury severity. The variable, male 
driver, is found as a random parameter affecting both possible injury (C) and more severe injury (AK), 
with a statistically significant mean and standard deviation with respect to each injury level. The 
variable, curve, is also a random parameter that has an influence on possible injury (C), although its 
mean is not significant based on the level of significance. This issue is not critical because whether a 
parameter is random or not is primarily based on the significance indication of its distribution of the 
standard deviation instead of its mean. The t-stat result of the standard deviation indicates that the 
variable, curve, is a random parameter. In addition, the variable, young age, is also found as a random 
parameter in the utility function of AK injury severity. 

5.3.2. Latent class model estimation results 

For the LCM, three different class numbers, 2 to 4, are separately tested with the same dataset, and 
their examination results are illustrated in Table 5-4. As the class number increases, the AIC and BIC 
values of the model also slightly increase, indicating that the performance becomes degraded. In 
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addition, another two indices, the class probability and level of significance for each class, are also 
adopted for model selection. When the dataset is classified into two classes, the two classes involve 70% 
and 30% of the total data, respectively. When assuming the whole dataset contains three latent classes, 
the larger sub-dataset is then approximately evenly divided and the smaller one remains almost the 
same, as shown by the percentages 36%, 33% and 31%, respectively. While in the four-class scenario, 
approximately both the two sub-datasets in the two-class model are more delicately divided, and the 
final four classes contain 66%, 4%, 18%, and 12% of the whole data, respectively. However, the delicate 
division is not beneficial for improving model performance. It shows in Table 5-4 that the class 
probabilities in the three-class model are not statistically significant. In addition, although all the class 
probabilities in the four-class scenario are significant, the deficient parameter estimation results show 
that this kind of division is less meaningful since considerably fewer parameters (12 versus 17/18) are 
found to be significantly related to driver injury severity. Therefore, the two-class model is selected as 
the final model for studying the variables’ impacts on driver injury severity outcomes in rural single-
vehicle crashes under rain conditions.  
 

Table 5-4 Comparison Results of LCMs with Different Numbers of Classes  

The number of latent classes  2 3 4 
Log likelihood -18038.60 -18196.38 -18203.31 
Class probability 70%*/30%* 36%/33%/31% 66%*/4%*/18%*/12%* 
Number of estimated model parameters (p) 17 18 12 
AIC 36111.20 36428.76 36430.62 
BIC 36243.70 36569.06 36524.15 

* Level of significance ≤ 0.05. 
 

Table 5-5 Estimation Results of LCM 

Variable Latent Class 1 Latent Class 2 
Coef.a S.E.b t-stat  95% CIc Coef.a S.E.b t-stat  95% CIc 

Lower Upper Lower Upper 
Constant 
C 3.62* 0.61 5.93 2.42 4.82 0.13 0.36 0.36 -0.57 0.83 
B 1.67* 0.62 2.69 0.46 2.89 0.70* 0.31 2.26 0.1 1.31 
AK 0.26 1.36 0.19 -2.41 2.93 3.28* 0.55 5.96 2.21 4.35 
Non-constant Parameter  
Curve (C) 0.58* 0.13 4.46 0.32 0.84 - -   - - 
Straight (C) - -   - - -1.33* 0.23 -5.78 -1.78 -0.88 
Drug/Alcohol Impaired (C) 1.50* 0.13 11.54 1.25 1.77 - -   - - 
Male (C) - -   - - -0.70* 0.22 -3.18 -1.14 -0.28 
Signal Control (B) 2.52* 1.12 2.25 0.34 4.71 -4.86* 1.32 -3.68 -7.45 -2.28 
Multiple Lanes (B) -0.26* 0.11 -2.36 -0.48 -0.05 -1.71* 0.43 -3.98 -2.55 -0.87 
Male (B) -0.34* 0.1 -3.40 -0.55 -0.14 -1.51* 0.36 -4.19 -2.21 -0.81 
On grade (AK) 1.16* 0.35 3.31 0.47 1.86 - -   - - 
Wet (AK) -1.09* 0.4 -2.73 -1.88 -0.32 - -   - - 
Pick-up (AK) 1.55* 0.4 3.88 0.78 2.33 - -   - - 
Young (AK) -0.73* 0.3 -2.43 -1.33 -0.14 -0.65* 0.11 -5.91 -0.88 -0.43 
Seatbelt not used (AK) 2.50* 0.47 5.32 1.58 3.43 1.01* 0.23 4.39 0.57 1.46 
Drug/Alcohol Impaired (AK) 3.50* 0.54 6.48 2.51 4.61 - -   - - 
Male (AK) -0.88* 0.29 -3.03 -1.45 -0.31 -0.35* 0.17 -2.06 -0.69 -0.01 
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Variable Latent Class 1 Latent Class 2 
Coef.a S.E.b t-stat  95% CIc Coef.a S.E.b t-stat  95% CIc 

Lower Upper Lower Upper 
Class probability  0.70* 0.30* 
Model statistics 
Number of observations (N) 17929 
Log-likelihood at constant -34854.87 
Log-likelihood at convergence -18038.6 
McFadden Pseudo R-square     0.48 

a Coefficient. 
b Standard error.  
c 95% confidence interval of estimation results.  
* Level of significance ≤ 0.05. 
 
The detailed estimation results of this model are listed in Table 5-5. It shows that remarkable differences 
exist between the two latent classes, since the variables that significantly influence driver injury severity 
to distribute quite diversely in the two classes. For instance, Drug/Alcohol-Impaired (C) and 
Drug/Alcohol-Impaired (AK) are found significantly affecting driver injury severities in Latent Class 1, 
whereas insignificant in Latent Class 2. These distinctive outcomes suggest that the data has a 
multivariate categorical nature and demonstrate the latent class logit model is appropriate for analyzing 
the crash dataset. 

5.3.3. Pseudo-elasticity analysis results 

In order to explain the impacts of these variables accurately, the average pseudo-elasticity is adopted on 
both the MLM and the LCM, and the results are listed in Table 5-6. Twelve variables regarding road 
geometric characteristics, road surface conditions, vehicle types, and driver demographic information 
and behavior, are found significant in the MLM while the elasticity analysis results of the two models are 
quite similar in terms of colored magnitude category, although the estimation values are not exactly 
same. The detailed discussions of these variables are presented in the following sections.  

 

Table 5-6 Average Pseudo-Elasticity Analysis for MLM and LCM 

Variable 
MLM LCM 
O C B AK O C B AK 

Curve -3.62% -24.33% 35.87% 84.14% -3.36% -9.43% 34.69% 20.13% 
On Grade -2.55% -2.37% -2.37% 52.77% -1.52% -1.84% -2.93% 59.88% 
Wet 2.81% 2.34% 2.63% -35.23% 2.13% 1.83% 4.69% -43.94% 
Signal Control  9.08% -27.20% 7.20% 6.51% 9.06% -41.38% 21.11% 48.08% 
Multiple Lanes 7.62% -25.39% 5.92% 5.40% 8.21% -38.20% 11.31% 23.88% 
Pick-up -1.39% -1.11% -1.12% 28.22% -1.60% -2.58% -2.90% 68.28% 
Semi 30.52% -47.83% -39.72% -61.11% - - - - 
Straight 10.62% 10.20% -43.42% 9.93% 6.56% 3.99% -29.60% 11.79% 
Drug/Alcohol Impaired -42.37% -10.58% 152.74% 204.72% -43.73% -15.46% 136.33% 502.67% 
Seatbelt not used -11.73% -10.77% -11.34% 265.43% -7.63% -6.50% -13.89% 318.38% 
Male 11.19% -18.72% -11.49% -5.27% 12.27% -24.98% -8.93% -16.81% 
Young 2.47% 1.77% 2.22% -38.24% 1.42% 0.66% 3.94% -42.76% 
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Pseudo-elasticity analysis results of the two models show that the variable, curve, has an influence on 
increasing driver injury severity in rural single-vehicle crashes under rain conditions. In the MLM, this 
variable increases the probabilities of driver injury serveries, B level and AK level injuries, by 35.87% and 
84.14%, respectively, while the corresponding values in the LCM are 34.69% and 20.13%, respectively. 
These results are consistent with previous studies where it was found that severe injuries are more likely 
to happen on the curve roads (Holdridge et al., 2005; Ye and Lord, 2014). Considering the impacts of 
rain, driving on curve roads becomes more challenging. It may take more time for vehicles to decelerate 
to a safe speed when running on a curve roadway because of the low friction on wet road surface. In 
addition, also due to the low friction, vehicles may easily lose control when sudden changes are applied 
to speed or steering while running at high speed on wet curve roads. Accordingly, possible 
countermeasures on this issue include increasing the radius of the curve where possible, installing a 
speed indicator at the beginning of the curve, and paving the curve road with materials with high 
resistance. 
 
The variable, road grade, is also significantly associated with driver injury severity by showing that it can 
increase the likelihood of the driver being severely injured (AK level) by over 50% in both two models. 
The reasons for these results are complicated, one of the important factors is that vehicle brakes are 
more frequently used to maintain the vehicle stability while driving on the graded roadway, which may 
increase the risk of brake failure and then lead to the vehicle losing control. Similar findings have also 
been discovered by previous studies (Khattak, 2001; Quddus et al., 2009; Li et al., 2018a), and the same 
influence exists not only in single-vehicle crashes but also in multi-vehicle crashes. Enhanced delineation 
treatments on the roadway can alert drivers in advance of grade roads and vary depending on the 
severity of the grade and the driving speed. In addition, high friction surface materials and treatments 
also can be implemented to help the drivers to maintain speeds when driving on grade roadways (Li et 
al., 2018a). 
 
The variable, wet, is found to significantly decrease the possibilities of AK level injuries in both models. 
The results seem to be contrary to everyday experience, however, in fact many previous studies have 
obtained similar conclusions (Lee et al., 2015; Wu et al., 2014). The reason may be that the drivers tend 
to adapt their speeds to the adverse road conditions to some degree while driving on the wet roads. 
This behavior is due to the driver's active behavioral adjustments to adverse external conditions to 
reduce and maintain low perceived driving risk, which is an example of risk compensation behavior. 
Interested readers are referred to the paper by Mannering and Bhat (2014) and the references cited 
therein.  
 
It is not surprising that the variable, signal control, can aggravate the driver injury severity in both 
models. Signal control devices are mainly located at the intersections that are among the locations with 
the most complex traffic conditions in a road network (Wang and Abdel-Aty, 2008). In the U.S., although 
only 10% of all intersections were signalized, nearly 30% of intersection-related fatalities occurred at 
signalized intersections (Rice, 2007). Traffic signals, especially for the left-turn and through traffic, may 
increase the number of conflict points as well as accident potential on a roadway. This challenge 
becomes more serious under rain conditions. Due to the limited visibility and low pavement friction 
under rain conditions, the available response distances for drivers at intersections is significantly 
reduced, and therefore crash risks and severe injury possibilities are notably increased.  
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As illustrated in Table 5-6, the variable, multiple lanes, slightly increases the possibilities of AK level 
crashes. A probable explanation is that multiple lanes are always associated with complex roadway and 
traffic conditions, e.g., more exclusive turning lanes, frequent lane changing behaviors, and variable 
speed limits across lanes, and thus may pose more challenges to the drivers in the rain. This finding is 
consistent with the results of previous studies (Aziz et al., 2013; Wang et al., 2006), where it was found 
that crashes on multi-lane roads have a higher probability of fatality. On the contrary, single lane roads 
were found to have a lower probability of leading to severe injuries and fatalities.  
 
The variable, pickup, is found significantly associated with driver injury severity in the rural single-vehicle 
crashes under rain conditions in the two models. More specifically, pickup drivers are more likely to 
suffer serious injuries and fatalities in rain-related single-vehicle crashes since the pseudo-elasticity 
analysis results showed that this variable could increase the probabilities of AK level injuries by 28.22% 
and 68.28% in the two models, respectively. The reason is understandable given that driving a pickup 
requires more driving skills and experiences than driving a passenger car. Besides, the higher inertia, 
which results from the larger mass of pickups comparing to passenger vehicles, also makes it more 
difficult to maintain safe driving, especially on the slippery road surface. Due to the difficulties in vehicle 
operation, rollovers, collisions with fixed objects, and other crash types with severe outcomes are more 
likely to occur in pickup related accidents.  
 
The variable, Semi-trailers, can reduce the possibilities of the driver being seriously injured according to 
their low pseudo-elasticity results in serious crashes in the MLM. However, this variable is not significant 
in the LCM. Previous studies also implied that semi-trailer is a variable that has adverse effects on driver 
injury severity (Carson and Mannering, 2001; Celik and Oktay, 2014; Chen et al., 2016a). For instance, 
Chen et al. (2016a) found that semi-trailers are less related to severe injuries, indicated by the negative 
estimated coefficient. Carson and Mannering (2001) concluded that semi-trailers could increase the 
probability of fatal injuries due to its relatively large size and weight. Therefore, more efforts should be 
made to figure out the underlying reason for these impacts.  
 
This variable, drug/alcohol-impaired, contains two aspects, i.e., drug and alcohol. However, they have 
quite similar impacts in compromising drivers’ sobriety and reasonable judgment but did not have 
enough records of presence in the studied dataset, and therefore were combined together in this study. 
The combined variable, representing the drivers’ state of consciousness, is expected to aggravate driver 
injury severity significantly. As shown in Table 5-6, driver alcohol/drug impairment can increase the 
potential for injuries and fatalities (B and AK levels) by over 150% in the two models. The results are 
reasonable since drug and alcohol can easily affect drivers’ physical and psychological functions, e.g., 
body balance, vision, sobriety, reaction time, etc., and bring about a series of consequences, including 
misjudgment, short-term memory loss, reduced information processing capability, and impaired 
perception. Therefore, engineering, enforcement and educational (3E) traffic safety-related 
countermeasures are needed, including highway safety patrol and sobriety check on the random and 
timely basis, enforced punishment for driving under the influence (DUI), and related defensive driving 
programs. 
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As shown in Table 5-6, when the seatbelt is not used, the likelihood of drivers suffering AK level injury 
dramatically increases in the two models, suggesting that using a seatbelt is an effective way of 
protecting the driver in a rural single-vehicle crash under rain condition. The favorable effects of seatbelt 
usage have also been evaluated by previous research (Abay et al., 2013; Chu, 2014; Yasmin et al., 2014). 
The seatbelt, which is an important part of vehicle design, can secure the occupant of a vehicle against 
harmful movement during a collision or a sudden stop.  When faced with crashes or other urgent 
circumstances or in the rain, it is harder for drivers to maintain normal driving on the slippery roadway, 
and thus seatbelts become more necessary to secure the driver against fierce movement and potential 
collision impact. Therefore, 3E efforts are also needed to ensure seatbelt usage on each occupant in 
every vehicle ride. For instance, a useful countermeasure could be video recognition techniques through 
roadway cameras applied to identify seatbelt usage status on vehicle occupants and issue traffic 
violation tickets and fines to those not wearing seatbelts, without violating people’s rights of privacy. 
The elasticity analysis results suggest that male drivers have less likelihood of serious injury and fatality 
when comparing with female drivers. The reason for this finding may be that male drivers have 
relatively experienced operation skills and additional physiological strength and can better handle 
complex road and environment situations under rain conditions. Other scholars have also found similar 
results that male drivers demonstrate better driving performance and safety levels in the areas of the 
complex external environment that require additional driving skills than during average-day driving 
(Staff et al., 2014; Yasmin et al., 2014).  
 
The age of drivers involved in the crashes is found to be a significant variable on driver injury severity in 
both models. The pseudo-elasticity analysis results indicate that young drivers are associated with 
reductions in the possibilities of driver serious injuries and fatalities in rural single-vehicle crashes under 
rain conditions. This is because young drivers have faster reactions than drivers in other age groups due 
to their physical flexibility (Castro et al., 2013; Xie et al., 2012). The relative lower average speeds in the 
rain may also contribute to reducing the injury severity of young drivers who are more likely to conduct 
speeding or reckless driving (Bolderdijk et al., 2011; Ulleberg, 2001). Furthermore, it is found in the 
dataset that 7.64% of young drivers drive pickup trucks, while the numbers in mid-age and old drivers 
are 15.30% and 10.66%, respectively. Given various impacts of vehicle types in the previous section, it is 
also evident to conclude that on average young drivers are safer than drivers of other age groups in rural 
single-vehicle crashes under rain conditions. 

5.3.4. Comparison between mixed logit model and latent class model 

A statistical comparison can better demonstrate which model is more appropriate for this dataset. As 
shown in Table 5-2, AIC and BIC of the MLM are 36312.68 and 36515.33, respectively. The same indices 
are also presented in Table 5- 4 for the LCM, and are 36111.20 and 36243.70, respectively. The relatively 
lower AIC and BIC values of the LCM indicate the model has slightly better performance than the MLM. 
In addition, the prediction success index, McFadden pseudo r-squared (0.47 for the MLM, 0.48 for the 
LCM), suggests that the LCM has slightly better predictive capability than the MLM. As shown in Table 5-
7, it can also be observed that the LCM predicted probabilities for the O and C levels (contain over 80% 
observations) are closer to the observations than the ones predicted by the MLM.  
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Table 5-7 Estimated MLM and LCM Outcome Probabilities Compared to Observed Severity Outcomes 

Components Mixed Logit Model Latent Class Model Observed 
Latent Class 1 Latent Class 2 Overall 

Crash population share   0.70 0.30   
Crash injury severity      
O 0.594 (-1.82%) 0.604 0.595 0.601 (-0.66%) 0.605 
C 0.223 (3.72%) 0.213 0.226 0.217 (0.93%) 0.215 
B 0.131 (-1.50%) 0.122 0.135 0.126 (-5.26%) 0.133 
AK 0.052 (10.64%) 0.061 0.044 0.056 (19.15%) 0.047 

 
Tables 5-8 and 5-9 present the likelihood ratio tests between different years of the MLM and the LCM, 
respectively. The results show that both models are not temporally stable. This finding is in line with 
some recent research (Behnood and Mannering, 2015, 2016). It is impossible to determine whether this 
temporal instability is due to some underlying influence of factors that affecting driver injury severity, or 
the result of changes induced by variations in economic conditions. However, the significant differences 
indicate that the effect of explanatory variables on driver injury severity of rain-related crashes has 
shifted over the years studied. Moreover, the LCM shows that it tends to provide lower 𝜒𝜒2 values in the 
temporal stability tests. In addition, some 𝜒𝜒2 values are not significant, indicating the model is temporal 
stable in some extent.  It should also be noted that the temporal instability indicates the estimation 
results of these two models may not be able to fully reveal the actual effects of the variables, and thus 
more advanced models that can account this issue are recommended in the future studies.  

Therefore, from the comparison between the MLM and the LCM, it could be concluded that the LCM is 
slightly superior to the MLM in the modeling process on the studied dataset regarding rural single-
vehicle crashes under rain conditions. However, it is noteworthy that the differences between the two 
models are rather modest, as the estimated parameters of the two models and the corresponding 
pseudo-elastic results are not significantly different. 
 

Table 5-8 Likelihood Ratio Test Results between Different Years based on MLM (𝝌𝝌𝟐𝟐 Values with 
Degrees of Freedom in Parenthesis and Confidence Level in Brackets) 

𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐 
2012 2013 2014 

2012 - 47.332 (24) [>99.70%] 54.631 (26) [>99.91%] 
2013 48.350 (26) [>99.50%] - 60.232 (25) [>99.99%] 
2014 55.253 (26) [>99.99%] 53.282 (24) [>99.99%] - 

 

Table 5-9 Likelihood Ratio Test Results between Different Years based on LCM (𝝌𝝌𝟐𝟐 Values with 
Degrees of Freedom in Parenthesis and Confidence Level in Brackets) 

𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐 
2012 2013 2014 

2012 - 34.332 (16) [>99.50%] 22.218 (17) [>82.22%] 
2013 27.622 (17) [>99.50%] - 40.335 (17) [>99.99%] 
2014 24.333 (17) [>89.00%] 33.513 (16) [>99.40%] - 
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5.4. Summary 

A three-year crash dataset including all rural single-vehicle crashes under rain conditions in four South 
Central states, i.e., Texas, Arkansas, Oklahoma, and Louisiana, from 2012 to 2014 was selected in this 
paper to analyze the impact factors on driver injury severity. The MLM and the LCM are both developed 
in this study on the identical dataset. Several ongoing debates, including distributions of random 
parameters and efficient iterations in the MLM, the optimal class number of LCM, and comparison of 
the two models, are all discussed in the study. Statistical parsimony indices, including AIC, BIC, as well as 
McFadden pseudo r-squared, are calculated for each model to evaluate their respective performance. In 
addition, their abilities to capture temporal instability are also calculated via likelihood ratio tests. 
Results show that choosing uniform distribution as prior for random parameters increases goodness-of-
fit of the MLM more than using normal and lognormal distributions. In addition, the two-class LCM also 
shows superiority when compared to the three- and four-class models. Moreover, a careful comparison 
between the two best models of their kinds is also conducted, and the results indicate that the LCM 
works slightly better in analyzing the dataset in this study.  

A series of significant contributing factors in terms of road geometric characters, traffic compositions 
and dynamics, and driver demographic features, are identified and compared with the two models. To 
better explain the model estimation results, pseudo-elasticity analyses of the significant factors were 
conducted. The results reveal that curve, on grade, signal control, multiple lanes, pickup, straight, 
drug/alcohol impaired, and seat belt not used can increase driver injury severity in the two models. On 
the other hand, wet, male, semi, and young are found to decrease driver injury outcomes. These results 
are not only useful for understanding the underlying risk factors of rural single-vehicle crashes under 
rain conditions, but can also provide meaningful references for developing appropriate 
countermeasures, strategies, and policies to mitigate the driver injury severity of relative crashes 
worldwide. In addition, effective management and planning, technical implementation guide of specific 
countermeasures, and political support and leadership are necessary and should be fulfilled together to 
improve traffic safety. 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

This report documents the research activities to investigate the traffic crashes in RITI communities 
involving considerable incapacitating injuries and losses. The traffic crashes occurring in RITI 
communities are related more to features like speeding, low safety devices application (for instance, 
seatbelt), adverse weather conditions and lacking maintenance and repair for road conditions, and 
inferior lighting conditions, than urban crashes. Thus, it is necessary to study the properties and 
attributes of traffic crashes at the RITI area using data analysis methods, such as statical methods, data-
driven methods, and so on. Unfortunately, there exists not only the unobserved heterogeneities but also 
the temporal instability in traditional crash data analysis. To address the research gap, this project 
employed the mixed logit model to examine the risk factors in determining driver injury severity in four 
crash configurations in two-vehicle rear-end crashes on state roads based on seven-years of data from 
the Washington State Department of Transportation. The research team developed a latent class mixed 
logit model with temporal indicators to investigate highway single-vehicle crashes and the effects of 
significant contributing factors to driver injury severity. In addition, this project also investigated the 
differences between the MLM and the LCM for exploring the relationships between driver injury 
severity in the rain-related rural single-vehicle crash and its corresponding risk factors.  

Four mixed MNL models for each crash configuration and one model for the overall data were 
constructed. The general (Winter), environment-specific (Daylight, Surface wet, straight but not level), 
driver-specific (Male, Age under 24), and vehicle-specific (In front, Airbag not ejected) variables show 
heterogeneity on the injury but only in specific groups. Each model's elasticity analysis is conducted to 
determine the sensitivity of the possibility of severity to the change if the key factors are estimated in 
these five mixed MNL models. The similarities across all the models include drinking alcohol (whether 
impaired or not impaired) raises the risk of injury and even fatality in all cases; male drivers reduce the 
probability of injury in all circumstances; straight but not level contributes to unsafe driving; the vehicle 
in front significantly relates to injury; effects of airbag not ejecting and dark without light are related to 
the injury. Besides similarity, each configuration has specific characteristics. For example, daylight 
driving is safer for all the cases except the TT crashes; In front and Curve and no level are impact factors 
of fatality only in PT crashes. Age above 65 is a risk factor of fatality only for PP crashes; surface 
condition influences TP crashes the most.  

In addition, a latent class mixed logit model with temporal indicators is developed. The proposed model 
is able to interpret both within- and across- class unobserved heterogeneity and temporal instability. 
Model goodness-of-fit measurements, including AIC and BIC, are conducted to compare the models with 
different numbers of latent classes. The two-class model outperformed the other models with higher 
number of classes in terms of lower AIC and BIC. The temporal indicators, including Year 2015 and Year 
2016, show significant influence on latent class membership, indicating that the effects of the 
explanatory variables on injury severity varies significantly in 2015 and 2016. Urban indicator and 
principal indicator are identified to be random parameters and have significant heterogeneity in the 
means as different functions of male, driver’s age indicator for [45, 65) and driver’s age for above 65. 
The model also includes a wide variety of factors relating general crash characteristics (collision object 
type and seasonal indicator), environment characteristics (road function, surface type, and speed limit), 
vehicle characteristics (vehicle age, airbag condition, and ejection condition), and driver characteristics 
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(driver age, belt usage, liability condition, and sobriety condition). The effects of the significant factors 
on driver injury severities are analyzed using pseudo elasticity estimations. Our results are generally in 
line with past studies that investigated the factors affecting single-vehicle crash severity. Based on the 
temporal elasticity analysis results, it is found that elasticity estimations of some significant variables 
reduce during the studying periods (such as overturn collision, off-road collision, winter, snow, turning 
movement, deployed airbag, child seat, no liability and old driver indicator on serious injury and 
fatality), while others increase (such as wet surface, ice surface, old vehicle, lane-change movement, no-
airbag, partial and totally ejection, impaired driver, and male driver on serious injury and fatality) or 
show stable value. 
 

Also, the MLM and the LCM are both developed in this study.  This project shows that choosing uniform 
distribution as prior for random parameters could better increase goodness-of-fit of the MLM than using 
normal and lognormal distributions. In addition, the two-class LCM also shows superiority when 
compared to the three- and four-class models. Moreover, a careful comparison between these two best 
models of their kinds is also conducted, and the results indicate that the LCM works slightly better in 
analyzing the aforementioned dataset in this study. A series of significant contributing factors in terms 
of road geometric characters, traffic compositions and dynamics, driver demographic features, etc., are 
identified and compared with the two models. To better explain the model estimation results, pseudo-
elasticity analyses of the significant factors are conducted. The results reveal that curve, on grade, signal 
control, multiple lanes, pickup, straight, drug/alcohol impaired, and seat belt not used can increase 
driver injury severity in the two models. On the other hand, wet, male, semi, and young are found to 
decrease driver injury outcomes. These results are not only useful for understanding the underlying risk 
factors of rural single-vehicle crashes under rain conditions, but can also provide meaningful references 
developing appropriate countermeasures, strategies, and policies to mitigate the driver injury severity of 
relative crashes worldwide.  

6.2. Recommendations 

To facilities future research, the following recommendations are made: 

(1) The differences in the key elements and those with heterogeneity imply that specific strategies 
should be adopted in each configuration accordingly. It is worth digging deeper into each crash 
configuration to understand their risk factors better. More research efforts could be made, including 
more potential risk factors such as the vehicle velocities, passengers in the vehicle, and so on. Time and 
space heterogeneity could also be a further consideration. 

(2) Effective management and planning, technical implementation guide of specific countermeasures, 
and political support and leadership are necessary and should be fulfilled together to improve traffic 
safety. 

(3) Based on the time-varying effects and previous engineering experience, appropriate 
countermeasures and police recommendations could be implemented to reduce highway single-vehicle 
crashes. 
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